Skip to main content

Causal Inference without Balance Checking: Coarsened Exact Matching

  • Stefano M. Iacus (a1), Gary King (a2) and Giuseppe Porro (a3)

We discuss a method for improving causal inferences called “Coarsened Exact Matching” (CEM), and the new “Monotonic Imbalance Bounding” (MIB) class of matching methods from which CEM is derived. We summarize what is known about CEM and MIB, derive and illustrate several new desirable statistical properties of CEM, and then propose a variety of useful extensions. We show that CEM possesses a wide range of statistical properties not available in most other matching methods but is at the same time exceptionally easy to comprehend and use. We focus on the connection between theoretical properties and practical applications. We also make available easy-to-use open source software for R, Stata, and SPSS that implement all our suggestions.

Corresponding author
e-mail: (corresponding author)
Hide All

Edited by Jonathan N. Katz

Authors' note: Open source R, Stata, and SPSS software to implement the methods described herein (called CEM) is available at; the CEM algorithm is also available via a standard interface offered in the R package MatchIt. Thanks to Erich Battistin, Nathaniel Beck, Matt Blackwell, Andy Eggers, Adam Glynn, Justin Grimmer, Jens Hainmueller, Ben Hansen, Kosuke Imai, Guido Imbens, Fabrizia Mealli, Walter Mebane, Clayton Nall, Enrico Rettore, Jamie Robins, Don Rubin, Jas Sekhon, Jeff Smith, Kevin Quinn, and Chris Winship for helpful comments. All information necessary to replicate the results in this paper appear in Iacus, King, and Porro (2011b).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Political Analysis
  • ISSN: 1047-1987
  • EISSN: 1476-4989
  • URL: /core/journals/political-analysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 1
Total number of PDF views: 244 *
Loading metrics...

Abstract views

Total abstract views: 953 *
Loading metrics...

* Views captured on Cambridge Core between 4th January 2017 - 24th March 2018. This data will be updated every 24 hours.