Skip to main content
    • Aa
    • Aa

A Robust Transformation Procedure for Interpreting Political Text

  • Lanny W. Martin (a1) and Georg Vanberg (a2)

In a recent article in the American Political Science Review, Laver, Benoit, and Garry (2003, “Extracting policy positions from political texts using words as data,” 97:311—331) propose a new method for conducting content analysis. Their Wordscores approach, by automating text-coding procedures, represents an advance in content analysis that will potentially have a large long-term impact on research across the discipline. To allow substantive interpretation, the scores produced by the Wordscores procedure require transformation. In this note, we address several shortcomings in the transformation procedure introduced in the original program. We demonstrate that the original transformation distorts the metric on which content scores are placed—hindering the ability of scholars to make meaningful comparisons across texts—and that it is very sensitive to the texts that are scored—opening up the possibility that researchers may generate, inadvertently or not, results that depend on the texts they choose to include in their analyses. We propose a transformation procedure that solves these problems.

Corresponding author
e-mail: (corresponding author)
Hide All

Authors' note: We would like to thank Ken Benoit, Michael Laver, three anonymous referees, and the editor for comments on earlier versions of this article.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Political Analysis
  • ISSN: 1047-1987
  • EISSN: 1476-4989
  • URL: /core/journals/political-analysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 43 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd June 2017. This data will be updated every 24 hours.