Article contents
Statistical Analysis of List Experiments
Published online by Cambridge University Press: 04 January 2017
Abstract
The validity of empirical research often relies upon the accuracy of self-reported behavior and beliefs. Yet eliciting truthful answers in surveys is challenging, especially when studying sensitive issues such as racial prejudice, corruption, and support for militant groups. List experiments have attracted much attention recently as a potential solution to this measurement problem. Many researchers, however, have used a simple difference-in-means estimator, which prevents the efficient examination of multivariate relationships between respondents' characteristics and their responses to sensitive items. Moreover, no systematic means exists to investigate the role of underlying assumptions. We fill these gaps by developing a set of new statistical methods for list experiments. We identify the commonly invoked assumptions, propose new multivariate regression estimators, and develop methods to detect and adjust for potential violations of key assumptions. For empirical illustration, we analyze list experiments concerning racial prejudice. Open-source software is made available to implement the proposed methodology.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Author 2012. Published by Oxford University Press on behalf of the Society for Political Methodology
Footnotes
Edited by R. Michael Alvarez
Authors' note: Financial support from the National Science Foundation (SES-0849715) is acknowledged. All the proposed methods presented in this paper are implemented as part of the R package, “list: Statistical Methods for the Item Count Technique and List Experiment,” which is freely available for download at http://cran.r-project.org/package=list (Blair and Imai 2011a). The replication archive is available as Blair and Imai (2011b), and the Supplementary Materials are posted on the Political Analysis Web site. We thank Dan Corstange for providing his computer code, which we use in our simulation study, as well as for useful comments. Detailed comments from the editor and two anonymous reviewers significantly improved the presentation of this paper. Thanks also to Kate Baldwin, Neal Beck, Will Bullock, Stephen Chaudoin, Matthew Creighton, Michael Donnelly, Adam Glynn, Wenge Guo, John Londregan, Aila Matanock, Dustin Tingley, Teppei Yamamoto, and seminar participants at New York University, the New Jersey Institute of Technology, and Princeton University for helpful discussions.
References
- 357
- Cited by