Skip to main content
×
Home

Unpredictable Voters in Ideal Point Estimation

  • Benjamin E. Lauderdale (a1)
Abstract

Ideal point estimators are typically based on an assumption that all legislators are equally responsive to modeled dimensions of legislative disagreement; however, particularistic constituency interests and idiosyncrasies of individual legislators introduce variation in the degree to which legislators cast votes predictably. I introduce a Bayesian heteroskedastic ideal point estimator and demonstrate by Monte Carlo simulation that it outperforms standard homoskedastic estimators at recovering the relative positions of legislators. In addition to providing a refinement of ideal point estimates, the heteroskedastic estimator recovers legislator-specific error variance parameters that describe the extent to which each legislator's voting behavior is not conditioned on the primary axes of disagreement in the legislature. Through applications to the roll call histories of the U.S. Congress, the E.U. Parliament, and the U.N. General Assembly, I demonstrate how to use the heteroskedastic estimator to study substantive questions related to legislative incentives for low-dimensional voting behavior as well as diagnose unmodeled dimensions and nonconstant ideal points.

Copyright
Corresponding author
e-mail: blauderd@princeton.edu (corresponding author)
Footnotes
Hide All

Author's note: The author thanks Chris Achen, Scott Ashworth, Michael Bailey, Larry Bartels, Charles Cameron, Brandice Canes-Wrone, Joshua Clinton, Kosuke Imai, John Londregan, Nolan McCarty, Adam Meirowitz, Kevin Quinn, Aaron Strauss, and several anonymous reviewers for their comments and suggestions.

Footnotes
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Political Analysis
  • ISSN: 1047-1987
  • EISSN: 1476-4989
  • URL: /core/journals/political-analysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 81 *
Loading metrics...

* Views captured on Cambridge Core between 4th January 2017 - 25th November 2017. This data will be updated every 24 hours.