Skip to main content
×
×
Home

Validating Estimates of Latent Traits from Textual Data Using Human Judgment as a Benchmark

  • Will Lowe (a1) and Kenneth Benoit (a2)
Abstract

Automated and statistical methods for estimating latent political traits and classes from textual data hold great promise, because virtually every political act involves the production of text. Statistical models of natural language features, however, are heavily laden with unrealistic assumptions about the process that generates these data, including the stochastic process of text generation, the functional link between political variables and observed text, and the nature of the variables (and dimensions) on which observed text should be conditioned. While acknowledging statistical models of latent traits to be “wrong,” political scientists nonetheless treat their results as sufficiently valid to be useful. In this article, we address the issue of substantive validity in the face of potential model failure, in the context of unsupervised scaling methods of latent traits. We critically examine one popular parametric measurement model of latent traits for text and then compare its results to systematic human judgments of the texts as a benchmark for validity.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Validating Estimates of Latent Traits from Textual Data Using Human Judgment as a Benchmark
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Validating Estimates of Latent Traits from Textual Data Using Human Judgment as a Benchmark
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Validating Estimates of Latent Traits from Textual Data Using Human Judgment as a Benchmark
      Available formats
      ×
Copyright
Corresponding author
e-mail: kbenoit@lse.ac.uk (corresponding author)
Footnotes
Hide All

Authors' note: Replication materials for this article are available from the Political Analysis dataverse at http://hdl.handle.net/1902.1/20387. Supplementary materials for this article are available on the Political Analysis Web site.

Footnotes
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Political Analysis
  • ISSN: 1047-1987
  • EISSN: 1476-4989
  • URL: /core/journals/political-analysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax
Type Description Title
PDF
Supplementary materials

Lowe and Benoit supplementary material
Supplementary Material

 PDF (316 KB)
316 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 139 *
Loading metrics...

Abstract views

Total abstract views: 500 *
Loading metrics...

* Views captured on Cambridge Core between 4th January 2017 - 20th June 2018. This data will be updated every 24 hours.