Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T04:44:20.676Z Has data issue: false hasContentIssue false

Are the Naica giant crystals deteriorating because of human action?

Published online by Cambridge University Press:  11 May 2020

M. E. Montero-Cabrera*
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua31136, Mexico
I. J. A. Carreño-Márquez
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua31136, Mexico
I. Castillo-Sandoval
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua31136, Mexico
B. Pérez-Cázares
Affiliation:
Universidad Autónoma de Chihuahua, Chihuahua31125, Mexico
L. E. Fuentes-Cobas
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua31136, Mexico
H. E. Esparza-Ponce
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua31136, Mexico
E. Menéndez-Méndez
Affiliation:
Instituto Eduardo Torroja de Ciencias de la Construcción, Madrid28033, Spain
M. E. Fuentes-Montero
Affiliation:
Universidad Autónoma de Chihuahua, Chihuahua31125, Mexico
H. Castillo-Michel
Affiliation:
European Synchrotron Radiation Facility, Grenoble Cedex 9 38043, France
D. Eichert
Affiliation:
Elettra Sincrotrone Trieste S.C.p.A., AREA Science Park, Basovizza (Trieste) 34149, Italy
R. Loredo-Portales
Affiliation:
Universidad Nacional Autónoma de México, Hermosillo83000, Mexico
J. Canche-Tello
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua31136, Mexico
M. Y. Luna-Porres
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua31136, Mexico
G. González-Sánchez
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua31136, Mexico
D. Burciaga-Valencia
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua31136, Mexico
C. Caraveo-Castro
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua31136, Mexico
G. Gómez-Méndez
Affiliation:
Universidad Autónoma de Chihuahua, Chihuahua31125, Mexico
L. Muñoz-Castellanos
Affiliation:
Universidad Autónoma de Chihuahua, Chihuahua31125, Mexico
I. Reyes-Cortes
Affiliation:
Universidad Autónoma de Chihuahua, Chihuahua31125, Mexico
*
a)Author to whom correspondence should be addressed. Electronic mail: elena.montero@cimav.edu.mx

Abstract

The giant gypsum crystals of Naica cave have fascinated scientists since their discovery in 2000. Human activity has changed the microclimate inside the cave, making scientists wonder about the potential environmental impact on the crystals. Over the last 9 years, we have studied approximately 70 samples. This paper reports on the detailed chemical–structural characterization of the impurities present at the surface of these crystals and the experimental simulations of their potential deterioration patterns. Selected samples were studied by petrography, optical and electronic microscopy, and laboratory X-ray diffraction. 2D grazing incidence X-ray diffraction, X-ray μ-fluorescence, and X-ray μ-absorption near-edge structure were used to identify the impurities and their associated phases. These impurities were deposited during the latest stage of the gypsum crystal formation and have afterward evolved with the natural high humidity. The simulations of the behavior of the crystals in microclimatic chambers produced crystal dissolution by 1–4% weight fraction under high CO2 concentration and permanent fog, and gypsum phase dehydration under air and CO2 gaseous environment. Our work suggests that most surface impurities are of natural origin; the most significant anthropogenic damage on the crystals is the extraction of water from the caves.

Type
Proceedings Paper
Copyright
Copyright © 2020 International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carreño-Márquez, I. J. A., Castillo-Sandoval, I., Esparza-Ponce, H. E., Fuentes-Cobas, L. E., and Montero-Cabrera, M. E. (2015). “Characterization of gypsum crystals exposed to a high CO2 concentration fog using X-ray,” in XI International Symposium on Radiation Physics, Vol. 1671, edited by G. Espinosa and J. Lopez (AIP Conf. Proc., Ciudad Juarez, Mexico), p. 7.Google Scholar
Carreño-Márquez, I. J. A., Menéndez-Méndez, E., Esparza-Ponce, H. E., Fuentes-Cobas, L., García-Rovés, R., Castillo-Sandoval, I., Luna-Porres, M., De-Frutos-Vaquerizo, J., and Montero-Cabrera, M. E. (2018). “Naica's giant crystals: deterioration scenarios,” Cryst. Growth Des. 18, 46114620.CrossRefGoogle Scholar
Castillo-Sandoval, I., Fuentes-Cobas, L. E., Fuentes-Montero, M. E., Esparza-Ponce, H. E., Carreno-Márquez, J., Reyes-Cortes, M., and Montero-Cabrera, M. E. (2015). “Light in the darkening on Naica gypsum crystals,” in XI International Symposium on Radiation Physics, Vol. 1671, edited by G. Espinosa and J. Lopez (AIP Conf. Proc., Ciudad Juarez, Mexico), p. 9.Google Scholar
Castillo-Sandoval, I., Fuentes-Cobas, L. E., Pérez-Cazares, B. E., Esparza-Ponce, H. E., Fuentes-Montero, M. E., Castillo-Michel, H., Eichert, D., Reyes-Cortes, I., Carreño-Márquez, I. J., Napoles-Duarte, J. M., and Montero-Cabrera, M. E. (2018). “Surface impurities on giant gypsum crystals from “la Cueva de las Espadas” (Cave of Swords), Naica, Mexico,” Mineral. Petrol. 112, 865879.CrossRefGoogle Scholar
Hammersley, A. P. (2004). FIT2D V12. 012 Reference Manual V6. 0. ESRF International Report No. ESRF98HA01 T. Program. Available at: http://www.esrf.eu/computing/scientific/FIT2D.Google Scholar
Ravel, B. and Newville, M. (2005). “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron Radiat. 12, 537541.CrossRefGoogle ScholarPubMed
Solé, V., Papillon, E., Cotte, M., Walter, P., and Susini, J. (2007). “A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra,” Spectrochim. Acta B 62, 6368.CrossRefGoogle Scholar
Takeno, N. (2005). Atlas of Eh-pH Diagrams. Intercomparison of Thermodynamic Databases (National Institute of Advanced Industrial Science and Technology, Geological Survey of Japan, Tokyo, Japan).Google Scholar
Van Driessche, A. E. S., García-Ruíz, J. M., Tsukamoto, K., Patiño-Lopez, L. D., and Satoh, H. (2011). “Ultraslow growth rates of giant gypsum crystals,” Proc. Natl. Acad. Sci. 108, 1572115726.CrossRefGoogle ScholarPubMed
Van Driessche, A. E. S., Stawski, T. M., Benning, L. G, and Kellermeier, M. (2017). “Calcium sulfate precipitation throughout its phase diagram,” in New Perspectives on Mineral Nucleation and Growth: From Solution Precursors to Solid Materials, edited by Van Driessche, A. E. S., Kellermeier, M., Benning, L. G. and Gebauer, D (Springer International Publishing, Cham), pp. 227256.CrossRefGoogle Scholar
Van Driessche, A. E. S., Stawski, T. M., and Kellermeier, M. (2019). “Calcium sulfate precipitation pathways in natural and engineering environments,” Chem. Geol. 530, 119274.CrossRefGoogle Scholar
Webb, S. (2007). Sam's Interface for XAS Package SixPACK (SSRL, Menlo Park, CA).Google Scholar