Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-rlmms Total loading time: 0.539 Render date: 2021-10-17T09:16:27.848Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A combined diffraction and EXAFS study of LaCoO3 and La0.5Sr0.5Co0.75Nb0.25O3 powders

Published online by Cambridge University Press:  28 February 2017

E. A. Efimova*
Affiliation:
Joint Institute for Nuclear Research, 141980 Dubna, Russia
V. V. Sikolenko
Affiliation:
Joint Institute for Nuclear Research, 141980 Dubna, Russia REC “Functional nanomaterials” Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
D. V. Karpinsky
Affiliation:
Scientific-Practical Material Research Center NAS Belarus, 220072 Minsk, Belarus
I. O. Troyanchuk
Affiliation:
Scientific-Practical Material Research Center NAS Belarus, 220072 Minsk, Belarus
S. Pascarelli
Affiliation:
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
C. Ritter
Affiliation:
Institut Laue-Langevin, Grenoble, France
M. Feygenson
Affiliation:
Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
S. I. Tiutiunnikov
Affiliation:
Joint Institute for Nuclear Research, 141980 Dubna, Russia
V. Efimov
Affiliation:
Joint Institute for Nuclear Research, 141980 Dubna, Russia
*
a)Author to whom correspondence should be addressed. Electronic mail: efea@mail.ru

Abstract

A combination of neutron diffraction, synchrotron X-ray diffraction, and high-resolution extended X-ray absorption fine structure measurements has been used to clarify the correlations between long- and local-range structural distortions across the spin-state transition in powders of LaCoO3 and La0.5Sr0.5Co0.75Nb0.25O3. The analysis of the diffraction data has revealed that the isotropic thermal parameters of Co–O bond abnormally increase below 100 K in both samples, while the temperature dependence of the average Co–O bond lengths is linear from 10 to 300 K. We also have found that the Co–O bond lengths are larger in La0.5Sr0.5Co0.75Nb0.25O3, as compared with the ones in LaCoO3. The X-ray absorption data showed an anomalous decrease of the Co–O bond lengths only for LaCoO3, in contrast to the bond length values obtained by diffraction. The structural anomalies observed by spectroscopy measurements are discussed in terms of the spin-state transition model.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fornasini, P., Beccara, G., Dalba, R., Grisenti, A., Sanson, M., and Vaccari, M. (2004). “Local dynamics, anharmonicity, and thermal expansion extended x-ray-absorption fine-structure measurements of copper,” Phys. Rev. B 70, 174301.CrossRefGoogle Scholar
Haverkort, M. V., Hu, Z., Cezar, J. C., Burnus, T., Hartmann, H., Reuther, M., Zobel, C., Lorenz, T., Tanaka, A., Brookes, N. B., Hsieh, H. H., Lin, H. J., Chen, C. T., and Tjeng, L. H. (2006). “Spin state transition in LaCoO3 studied using soft X-ray absorption spectroscopy and magnetic circular dichroism,” Phys. Rev. Lett. 97, 176405.CrossRefGoogle ScholarPubMed
Herklotz, A., Rata, A. D., Schultz, L., and Doerr, K. (2009). “Reversible strain effect on the magnetization of LaCoO3 films,” Phys. Rev. B 79, 092409.CrossRefGoogle Scholar
Knížek, K., Jirak, Z., Hejtmanek, J., Veverka, M., Marysko, M., and Maris, G. (2005). “Structural anomalies associated with the electronic and spin transitions in LnCoO3 ,” Eur. Phys. J. B 47, 213.CrossRefGoogle Scholar
Korotin, M. A., Anisimov, V. I., Khomskii, D. I., Ezhov, S. Y., Solovyev, I. V., Khomskii, D. I., and Sawatzky, G. A. (1996). “Intermediate-spin state and properties of LaCoO3 ,” Phys. Rev. B 54, 5309.CrossRefGoogle ScholarPubMed
Kuzmin, A. (1995). “EDA: EXAFS data analysis software package,” Physica B 208/209, 175.CrossRefGoogle Scholar
Maris, G., Ren, Y., Volotchaev, V., Zobel, C., Lorenz, T., and Palstra, T. (2003). “Evidence for orbital ordering in LaCoO3 ,” Phys. Rev. B 67, 224423.CrossRefGoogle Scholar
Pandey, S., Kumar, A., and Prabhakaran, D. (2008). “Investigation of the spin state of Co in LaCoO3 at room temperature: ab initio calculations and high-resolution photoemission spectroscopy of single crystals,” Phys. Rev. B 77, 045123.CrossRefGoogle Scholar
Pirogov, A. N., Teplykh, E. A., Voronin, V. I., Balagurov, A. M., Pomjakushin, V. Y., Sikolenko, V. V., and Filonova, E. A. (1999). “Ferro- and antiferromagnetic ordering in LaMnO3+ ,” Phys. of the Sol. State 41, 91.CrossRefGoogle Scholar
Podlesnyak, A., Streule, S., Mesot, J., Medarde, M., Pomjakushina, E., Conder, K., Tanaka, A., Haverkort, M. V., and Khomskii, D. I. (2006). “Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of exrefd magnetic states,” Phys. Rev. Lett. 97, 247208.CrossRefGoogle ScholarPubMed
Potze, R. H., Sawatzky, G. A., and Abbate, M. (1995). “Possibility for an intermediate-spin ground state in the charge-transfer material SrCoO3 ,” Phys. Rev. B 51, 11501.CrossRefGoogle Scholar
Radaelli, P. G. and Cheong, S. W. (2002). “Structural phenomena associated with the spin-state transition in LaCoO3 ,” Phys. Rev. B 66, 094408.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192, 55.CrossRefGoogle Scholar
Sazonov, A. P., Troyanchuk, I. O., Gamari-Seale, H., Sikolenko, V. V., Stefanopoulos, K. L., Nicolaides, G. K., and Atanassova, Y. K. (2009). “Neutron diffraction study and magnetic properties of La1−x Ba x CoO3 (x = 0.2 and 0.3),” J. Phys.: Condens. Mater 21, 156004.Google Scholar
Senaris-Rodriguez, M. A. and Goodenough, J. B. (1995). “Magnetic and transport properties of the system La1−x Sr x CoO3−δ (0 < x ≤ 0.50),” J. Solid State Chem. 118, 323.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides,” Acta Crystallogr. Sect. A 32, 751.CrossRefGoogle Scholar
Sikolenko, V., Efimov, V., Efimova, E., Sazonov, A., Ritter, C., Kuzmin, A., and Troyanchuk, I. (2009). “Neutron diffraction studies of structural and magnetic properties of niobium doped cobaltites,” J. Phys.: Condens. Matter 21, 436002.Google ScholarPubMed
Sundaram, N., Jiang, Z., Anderson, I. E., Belanger, D. P., Booth, C. H., Bridges, F., Mitchell, J. F., Proffen, T., and Zheng, H. (2009). “Local structure of La1−x Sr x CoO3 determined from EXAFS and neutron pair distribution function studies,” Phys. Rev. Lett. 102, 026401.CrossRefGoogle Scholar
Troyanchuk, I., Balagurov, A., Sikolenko, V., Efimov, V., and Sheptyakov, D. (2013a). “Very large magnetoresistance and spin state transition in Ba-doped cobaltites,” J. Appl. Phys. 113, 053909.CrossRefGoogle Scholar
Troyanchuk, I., Bushinsky, M., Sikolenko, V., Efmov, V., Ritter, C., Hansen, T., and Többens, D. M. (2013b). “Pressure induced antiferromagnet–ferromagnet transition in La0.5Ba0.5CoO2.8 cobaltite,” Eur. Phys. J. B 86, 435.CrossRefGoogle Scholar
Zobel, C., Kriener, M., Bruns, D., Baier, J., Grüninger, M., Lorenz, T., Reutler, P., and Revcolevschi, A. (2002). “EXAFS and X-ray diffraction study of LaCoO3 across the spin-state transition,” Phys. Rev. B 66, R020402.Google Scholar

Linked content

Please note a has been issued for this article.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A combined diffraction and EXAFS study of LaCoO3 and La0.5Sr0.5Co0.75Nb0.25O3 powders
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A combined diffraction and EXAFS study of LaCoO3 and La0.5Sr0.5Co0.75Nb0.25O3 powders
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A combined diffraction and EXAFS study of LaCoO3 and La0.5Sr0.5Co0.75Nb0.25O3 powders
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *