Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-25T15:34:06.363Z Has data issue: false hasContentIssue false

Crystal structure of copper(ii) citrate monohydrate solved from a mixture powder X-ray diffraction pattern

Published online by Cambridge University Press:  07 November 2013

Ana Palčić
Affiliation:
Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
Ivan Halasz*
Affiliation:
Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
Josip Bronić
Affiliation:
Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
*
a)Author to whom correspondence should be addressed. Electronic mail: ihalasz@irb.hr

Abstract

The crystal structure of copper(ii) citrate monohydrate (C6H4O7Cu2·H2O) has been solved from a mixture powder diffraction pattern. Approach to indexing, structure solution and Rietveld refinement of multiphase diffraction patterns is discussed. Rietveld refinement is carried out employing free-atom refinement and rigid body refinement.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruker-AXS (2007). TOPAS V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data – Users Manual (Bruker-AXS, Karlsruhe, Germany).Google Scholar
Cheary, R. W., Coelho, A. A., and Cline, J. (2004). “Fundamental parameters line profile fitting in laboratory diffractometers,” J. Res. Natl. Inst. Stand. Technol. 109, 125.CrossRefGoogle ScholarPubMed
Coelho, A. A. (2003). “Indexing of powder diffraction patterns by iterative use of singular value decomposition,” J. Appl. Cryst. 36, 8695.CrossRefGoogle Scholar
David, W. I. F. and Shankland, K. (2008). “Structure determination from powder diffraction data,” Acta Crystallogr. A 64, 5264.CrossRefGoogle ScholarPubMed
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Cryst. 1, 108113.CrossRefGoogle Scholar
Dinnebier, R. E., Olbrich, F., van Smaalen, S., and Stephens, P. W. (1997). “Ab initio structure determination of two polymorphs of cyclopentadienylrubidium in a single powder pattern,” Acta Cryst. B 53, 153158.CrossRefGoogle Scholar
Dunhill, R. H., Pilbrow, J. R., and Smith, T. D. (1966). “Electron spin resonance of copper (II) citrate chelates,” J. Chem. Phys. 45, 14741481.CrossRefGoogle Scholar
Férey, G. (2008). “Hybrid porous solids: past, present, future,” Chem. Soc. Rev. 37, 191214.CrossRefGoogle ScholarPubMed
Halasz, I. and Dinnebier, R. E. (2010). “Structural and thermal characterization of zolpidem hemitartrate hemihydrate (form E) and its decomposition products by laboratory X-ray powder diffraction,” J. Pharm. Sci. 99, 871878.CrossRefGoogle ScholarPubMed
Harris, K. D. M. and Cheung, E. Y. (2004). “How to determine structures when single crystals cannot be grown: opportunities for structure determination of molecular materials using powder diffraction data,” Chem. Soc. Rev. 33, 526538.CrossRefGoogle ScholarPubMed
Le Bail, A., Cranswick, L. M. D., Adil, K., Altomare, A., Avdeev, M., Campi, G., Cerny, R., Cuocci, C., Giacovazzo, C., Halasz, I., Louwen, J., Moliterni, A., Palatinus, L., Rizzi, R., Schilder, E., Stephens, P., Stone, K., and van Mechelen, J. (2009). “Third structure determination by powder diffractometry round-robin (SDPDRR-3),” Powder Diffr. 24, 254262.CrossRefGoogle Scholar
Mastropaolo, D., Powers, D. A., Potenza, J. A., and Schugar, H. J. (1976). “Crystal structure and magnetic properties of copper citrate dihydrate, Cu2C6H4O7·2H2O,” Inorg. Chem. 15, 14441449.CrossRefGoogle Scholar
Pawley, G. S. (1991). “Unit-cell refinement from powder diffraction scans,” J. Appl. Cryst. 14, 357367.CrossRefGoogle Scholar
Pickering, S. U. (1912). “Copper salts and their behaviour with alkalis,” J. Chem. Soc., Trans. 101, 174192.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst. 2, 6571.CrossRefGoogle Scholar
Rubčić, M., Užarević, K., Halasz, I., Bregović, N., Mališ, M., Đilović, I., Kokan, Z., Stein, R. S., Dinnebier, R. E., and Tomišić, V. (2012). “Desmotropy, polymorphism and solid-state proton transfer: four solid forms of an aromatic o-hydroxy Schiff base,” Chem. – Eur. J. 18, 56205631.CrossRefGoogle ScholarPubMed
Stock, N. and Biswas, S. (2012). “Synthesis of Metal-Organic Frameworks (MOFs): routes to various MOF topologies, morphologies, and composites,” Chem. Rev. 112, 933969.CrossRefGoogle ScholarPubMed
Zhang, G., Yang, G., and Ma, J. S. (2006). “Versatile framework solids constructed from divalent transition metals and citric acid: syntheses, crystal structures, and thermal behaviors,” Cryst. Growth Des. 6, 375381.CrossRefGoogle Scholar
Zhou, H.-C., Long, J. R., and Yaghi, O. M. (2012). “Introduction to Metal-Organic Frameworks,” Chem. Rev. 112, 673674.CrossRefGoogle ScholarPubMed