Hostname: page-component-7d684dbfc8-4nnqn Total loading time: 0 Render date: 2023-09-23T12:31:23.044Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

The crystal structure of Na(NH4)Mo3O10·H2O

Published online by Cambridge University Press:  20 June 2017

Joel W. Reid*
Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
James A. Kaduk
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago 60616, Illinois
Jeremy A. Olson
Canadian Isotope Innovations Corp., 232-111 Research Drive, Saskatoon, SK S7N 3R2, Canada
a)Author to whom correspondence should be addressed. Electronic mail:


The crystal structure of Na(NH4)Mo3O10·H2O has been solved by parallel tempering using the FOX software package with synchrotron powder diffraction data obtained from beamline 08B1-1 at the Canadian Light Source. Rietveld refinement, performed with the software package GSAS, yielded orthorhombic lattice parameters of a = 13.549 82(10), b = 7.618 50(6), and c = 9.302 74(7) Å (Z = 4, space group Pnma). The structure is composed of molybdate chains running parallel to the b-axis. The Rietveld refinement results were compared with density functional theory calculations performed with CRYSTAL14, and show excellent agreement with the calculated structure.

New Diffraction Data
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Anbar, A. D. (2004). “Molybdenum stable isotopes: observation, interpretations and directions,” Rev. Mineral. Geochem. 55, 429454.CrossRefGoogle Scholar
Banerjee, S., Pillai, M. R. A., and Ramamoorthy, N. (2001). “Evolution of Tc-99 m in diagnostic radiopharmaceuticals,” Sem. Nucl. Med. 31, 260277.CrossRefGoogle Scholar
Boultif, A. and Louer, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model (Oxford University Press, New York).Google Scholar
Chippendale, A. M. and Cheetham, A. K. (1994). “The Oxide Chemistry of Molybdenum,” in Molybdenum: An Outline of its Chemistry and Uses, edited by Braithwaite, E. R. and Haber, J. (Elsevier, Amsterdam), pp. 146184.CrossRefGoogle Scholar
Cora, F., Patel, A., Harrison, N. M., Roetti, C., and Catlow, C. R. A. (1997). “An ab-initio Hartree-Fock study of alpha-MoO3,” J. Mater. Chem. 7, 959967.CrossRefGoogle Scholar
Dovesi, R., Roetti, C., Freyria Fava, C., Prencipe, M., and Saunders, V. R. (1991). “On the elastic properties of lithium, sodium and potassium oxide. An ab initio study,” Chem. Phys. 156, 1119.CrossRefGoogle Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noel, Y., Causa, M., Rerat, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the Ab Initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871313.CrossRefGoogle Scholar
Enjalbert, R., Guinneton, F., and Galy, J. (1999). “Cs2Mo3O10 ,” Acta Crystallogr. C55, 273276.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘Free Objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.CrossRefGoogle Scholar
Fodje, M., Grochulski, P., Janzen, K., Labiuk, S., Gorin, J., and Berg, R. (2014). “08B1-1: an automated beamline for macromolecular crystallography experiments at the Canadian Light Source,” J. Synchrotron Rad. 21, 633637.CrossRefGoogle ScholarPubMed
Fӧrster, A., Kreusler, H. U., and Fuchs, J. (1985). “Die kristallinen Phasen der Alkalitrimolybdate,” Z. Naturforsch. 40b, 11391148.Google Scholar
Garner, C. D. (1994). “The Chemical Nature of the Molybdenum Centres in Enzymes,” in Molybdenum: An Outline of its Chemistry and Uses, edited by Braithwaite, E. R. and Haber, J. (Elsevier, Amsterdam), pp. 403418.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Green, M. L. H. (1994). “An Introduction to the Chemistry of Molybdenum,” in Molybdenum: An Outline of its Chemistry and Uses, edited by Braithwaite, E. R. and Haber, J. (Elsevier, Amsterdam), pp. 95145.Google Scholar
Haber, J. (1994). “Molybdenum Compounds in Heterogeneous Catalysis,” in Molybdenum: An Outline of its Chemistry and Uses, edited by Braithwaite, E. R. and Haber, J. (Elsevier, Amsterdam), pp. 477617.CrossRefGoogle Scholar
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R. (2012). “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminform. 4, 17.CrossRefGoogle ScholarPubMed
Hellenbrandt, M. (2004). “The inorganic crystal structure database (ICSD) – present and future,” Crystallogr. Rev. 10, 1722.CrossRefGoogle Scholar
ICDD (2015). PDF-4+ 2015 (Database), edited by Dr. Kabekkodu, Soorya, International Centre for Diffraction Data, Newtown Square, PA, USA.Google Scholar
Kaduk, J. A. (2007). “Chemical reasonableness in Rietveld analysis: inorganics,” Powder Diffr. 22, 268278.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report No. LAUR 86-748). Los Alamos, NM: Los Alamos National Laboratory.Google Scholar
Lasheen, T. A., El-Almady, M. E., Haasib, H. B., and Helal, A. S. (2015). “Molybdenum metallurgy review: hydrometallurgical routes to recovery of molybdenum from ores and mineral raw materials,” Miner. Proc. Extract. Metall. Rev. 36, 145173.CrossRefGoogle Scholar
Lasocha, W., Jansen, J., and Schenk, H. (1995). “Crystal structure of ammonium trimolybdate monohydrate (NH4)2Mo3O10·H2O by powder diffraction method,” J. Solid State Chem. 116, 422426.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2000). “LMGP-Suite Suite of Programs for the interpretation of X-ray Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. and Google Scholar
Momma, K., and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.CrossRefGoogle Scholar
National Research Council (2009). Medical Isotope Production Without Highly Enriched Uranium (National Academies Press, Washington).Google ScholarPubMed
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open babel: an open chemical toolbox,” J. Chem. Inf., 114. doi: 10.1186/1758-2946-3-33.Google ScholarPubMed
Range, K.-J. and Fässler, A. (1990). “Diammonium trimolybdate(VI), (NH4)2Mo3O10 ,” Acta Crystallogr. C46, 488489.Google Scholar
Roggan, S. and Limberg, C. (2006). “Molecular molybdenum/bismuth compounds,” Inorg. Chim. Acta 359, 46984722.CrossRefGoogle Scholar
Sasaki, S. (1989). Numerical Tables of Anomalous Scattering Factors Calculated by the Cromer and Lieberman's Method (KEK Report 88-14).Google Scholar
Schwarz, G., Mendel, R. R., and Ribbe, M. W. (2009). “Molybdenum cofactors, enzymes and pathways,” Nature 460, 839847.CrossRefGoogle ScholarPubMed
Seleborg, M. (1966). “The crystal structure of dipotassium trimolybdate,” Acta Chem. Scand. 20, 21952201.CrossRefGoogle Scholar
Sławiński, W. A., Fjellvåg, Ø., Ruud, A., and Fjellvåg, H. (2016). “A novel polytype – the stacking fault based γ-MoO3 nanobelts,” Acta Cryst. B72, 201208.Google Scholar
Tkac, P. and Vandergrift, G. F. (2016). “Recycling of enriched Mo targets for economic production of 99Mo/99mTc medical isotope without use of enriched uranium,” J. Radioanal. Nucl. Chem. 308, 205212.CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open-source all-purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Van Noorden, R. (2013). “The medical testing crisis,” Nature 504, 202204.CrossRefGoogle ScholarPubMed
Xu, Y., An, L. H., and Koh, L. L. (1996). “Investigations into the engineering of inorganic/organic solids: hydrothermal synthesis and structure characterization of one-dimensional molybdenum oxide polymers,” Chem. Mater. 8, 814818.CrossRefGoogle Scholar
Zaman, S. and Smith, K. J. (2012). “A review of molybdenum catalysts for synthesis gas conversion to alcohols: catalysts, mechanisms and kinetics,” Catal. Rev. Sci. Eng. 54, 41132.CrossRefGoogle Scholar
Supplementary material: File

Reid supplementary material

Reid supplementary material

Download Reid supplementary material(File)
File 759 KB