Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-30T00:10:06.253Z Has data issue: false hasContentIssue false

Micro X-ray fluorescence in materials characterization

Published online by Cambridge University Press:  06 March 2012

George J. Havrilla*
Affiliation:
Los Alamos National Laboratory, MS K484, Los Alamos, New Mexico 87545
Thomasin Miller
Affiliation:
Los Alamos National Laboratory, MS K484, Los Alamos, New Mexico 87545
*
a)Author to whom correspondence should be addressed; Electronic mail: havrilla@lanl.gov

Abstract

Micro X-ray fluorescence (MXRF) offers the analyst a new approach to materials characterization. The range of applications is expanding rapidly. Single point analysis has been demonstrated for nanoliter volumes with detection limits at the 0.5 ng level. MXRF can be used as an element specific detector for capillary electrophoresis. Elemental imaging applications include analysis of sample corrosion and polymers, use as a combinatorial chemistry screening tool, and integration with molecular spectroscopic imaging methods to provide a more comprehensive characterization. Three-dimensional elemental imaging is a reality with the development of a confocal X-ray fluorescence microscope. Stereoview elemental X-ray imaging can provide unique views of materials that flat two-dimensional images cannot achieve. Spectral imaging offers chemical imaging capability, moving MXRF into a higher level of information content. The future is bright for MXRF as a materials characterization tool.

Type
Special Section on Microanalysis
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carpenter, D., editor (1997). X-ray Spectrom. XRSPAX 26, 314387. xrs, XRSPAX 3.0.CO;2-T>CrossRefGoogle Scholar
Colletti, L. P.and Havrilla, G. J. (1997). Adv. X-ray Anal. AXRAAA 42, 6473. axr, AXRAAA Google Scholar
Ding, X., Gao, N., and Havrilla, G. J. (2000). Advances in Laboratory-Based X-ray Sources and Optics, edited by MacDonald, C. and Khounsary, A. M. [Proc. SPIE PSISDG 4144 174182]. spi, PSISDG CrossRefGoogle Scholar
Havrilla, G. J., Morton, R. W., Miller, T. C., and Huntley, K. G. (2003). Denver X-ray Conference Abstracts, p. 212.Google Scholar
Janssens, K., Adams, F., and Rindby, A., editors (2000). Microscopic X-ray Fluorescence Analysis (Wiley, Chichester), 419 pp.Google Scholar
Kotula, P. G., Keenan, M. R., and Michael, J. R. (2003). Microsc. Microanal. MIMIF7 9, 117. mim, MIMIF7 CrossRefGoogle Scholar
Link, D. D., Kingston, H. M. S., Havrilla, G. J., and Colletti, L. P. (2002). Anal. Chem. ANCHAM 74, 11651170. anc, ANCHAM CrossRefGoogle Scholar
Mann, S. E., Ringo, M. C., Shea-McCarthy, G., Penner-Hahn, J. E., and Evans, C. E. (2000). Anal. Chem. ANCHAM 72, 17541758. anc, ANCHAM CrossRefGoogle Scholar
Meltzer, C.and King, B.-S. (1991). Adv. X-ray Anal. AXRAAA 34, 4155. axr, AXRAAA Google Scholar
Miller, T. C.and Havrilla, G. J. (2004). X-ray Spectrom. XRSPAX 33, 101106. xrs, XRSPAX CrossRefGoogle Scholar
Miller, T. C., Joseph, M. R., Havrilla, G. J., Lewis, C., and Majidi, V. (2003a). Anal. Chem. ANCHAM 76, 20482053. anc, ANCHAM CrossRefGoogle Scholar
Miller, T. C., Mann, G., Havrilla, G. J., Wells, C. A., Warner, B. P., and Baker, R. T. (2003b). J. Comb. Chem. JCCHFF 5, 245252.CrossRefGoogle Scholar
Miller, T. C., Sparks, C. M., Havrilla, G. J., and Beebe, M. R. (2004). Spectrochim. Acta, Part B (in press).Google Scholar
Schoonover, J. R., Weesner, F., Havrilla, G. J., Sparrow, M., and Treado, P. (1998). Appl. Spectrosc. APSPA4 52, 15051514. aps, APSPA4 CrossRefGoogle Scholar