Skip to main content

An empirical derivation of the X-ray optic transmission profile used in calibrating the Planetary Instrument for X-ray Lithochemistry (PIXL) for Mars 2020

  • C. M. Heirwegh (a1), W. T. Elam (a2), D. T. Flannery (a1) and A. C. Allwood (a1)

Calibration of the prototype Planetary Instrument for X-ray Lithochemistry (PIXL) selected for Mars 2020 has commenced with an empirical derivation of the X-ray optic transmission profile. Through a straightforward method of dividing a measured “blank” spectrum over one calculated assuming no optic influence, a rudimentary profile was formed. A simple boxcar-smoothing algorithm was implemented to approximate the complete profile that was incorporated into PIQUANT. Use of this form of smoothing differs from the more conventional approach of using a parameter-based function to complete the profile. Comparison of element-specific correction factors, taken from a measurement of NIST SRM 610, was used to assess the accuracy of the new profile. Improvement in the low- to mid-energy portion of the data was apparent though the high-energy region diverged from unity, and thus, requires further refinement.

Corresponding author
a)Author to whom correspondence should be addressed. Electronic mail:
Hide All
Allwood, A. C., Wade, L., Clark, B., Elam, T., Flannery, D., Foote, M., Hurowitz, J., and Knowles, E. (2015) “Texture-specific elemental analysis of rocks and soils with PIXL: The Planetary Instrument for X-ray Lithochemistry on Mars 2020,” Proceedings of IEEE Aerospace Conference 2015, Piscataway, New Jersey, March 7–14, 2015.
Campbell, J. L., McDonald, L., Hopman, T., and Papp, T. (2001) “Simulations of Si(Li) x-ray detector response,” X-ray Spectrom., 30, 230241.
Eggert, T., Boslau, O., Kemmer, J., Pahlke, A., and Wiest, F. (2006) “The spectral response of silicon X-ray detectors,” Nucl. Instrum. Methods A, 568, 111.
Elam, W. T., Ravel, B. D., and Sieber, J. R. (2002) “A new atomic database for X-ray spectroscopic calculations,” Radiat. Phys. Chem., 63, 121128.
Hodoroaba, V. and Procop, M. (2009) “Determination of the real transmission of an X-ray lens for micro-focus XRF at the SEM by coupling measurement with calculation of scatter spectra,” X-ray Spectrom., 38, 216221.
Lowe, B. G. (2000) “An analytical description of low-energy X-ray spectra in Si(Li) and HPGE detectors,” Nucl. Instrum. Methods A, 439, 247261.
Papp, T. (2003) “On the response function of solid-state detectors, based on energetic electron transport processes,” X-ray Spectrom., 32, 458469.
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., and Chenery, S. P. (1997) “A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials,” Geostandard. Newslett., 21, 115144.
Scholze, F. and Procop, M. (2009) “Modelling the response function of energy dispersive X-ray spectrometers with silicon detectors,” X-ray Spectrom., 38, 312321.
Wolff, T., Malzer, W., Mantouvalou, I., Hahn, O., and Kanngieβer, B. (2011) “A new fundamental parameter based calibration procedure for micro X-ray fluorescence spectrometers,” Spectrochim. Acta B, 66, 170178.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed