Skip to main content Accessibility help

Anomalous behavior of displacement correlation function and strain in lanthanum cobalt oxide analyzed both from X-ray powder diffraction and EXAFS data

  • V. Efimov (a1), V. Sikolenko (a1) (a2), I. O. Troyanchuk (a3), D. Karpinsky (a3), E. Efimova (a1), S. I. Tiutiunnikov (a1), B. N. Savenko (a1), D. Novoselov (a4) (a5) and D. Prabhakaran (a6)...


A combined X-ray powder diffraction (XPD) and high-resolution extended X-ray absorption fine structure (EXAFS) at the Co and Ga K-edges study has been performed for LaCoO3 and LaGaO3 ceramics, the latter sample was used as a reference without spin transitions. Based on the X-ray diffraction data, we have found that isotropic atomic displacement parameters (ADP) or mean-squared displacement of the Co–O bond exhibit gradual growth below ~50 K, wherein the strain dependencies testify rapid increase below 150 K for the LaCoO3 having rhombohedral structure. No similar features could be observed for LaGaO3 sample. Above ~100 K the isotropic ADP of the Co–O bond indicate a gradual growth, whereas strain curves show distinct bend near the spin-state transition temperature at about 150 K. According to the EXAFS data, the correlated parallel mean squared relative displacement (MSRD||) of Co–O and Ga–O bonds exhibit a gradual growth above 150 K; however, in the LaCoO3 this parameter is notably bigger. It is supposed that at low temperature the cobalt ions are dominantly in low-spin (LS) state, while certain amount of Co3+ ions located within the surface layer of the crystallines have high-spin state (HS). Temperature growth leads to a gradual transformation of the HS state of the cobalt ions into the highly-hybridized intermediate-spin (IS) state, while the cobalt ions located in the inner part of the crystallines remain LS configuration up to 150 K. Further temperature increase leads to a spin transition of the Co3+ ions located within the crystallines from the LS state into the IS one.


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail:


Hide All
Boysen, H., Lerch, M., Gilles, R., Krimmer, B., and Többens, D. M. (2002). “Structure and ionic conductivity in doped LaGaO3 ,” Appl. Phys. A 74, S966S968.
Haverkort, M. V., Hu, Z., Cezar, J. C., Burnus, T., Hartmann, H., Reuther, M., Zobel, C., Lorenz, T., Tanaka, A., Brookes, N. B., Hsieh, H. H., Lin, H. J., Chen, C. T., and Tjeng, L. H. (2006). “Spin state transition in LaCoO3 studied using soft X-ray absorption spectroscopy and magnetic circular dichroism,” Phys. Rev. Lett. 97, 176405.
Jiang, Y., Bridges, F., Sundaram, N., Belanger, D. P., Anderson, I. E., Mitchell, J. F., and Zheng, H. (2009). “Study of the local distortions of the perovskite system La1−xSrxCoO3(0≤x≤0.35) using the extended x-ray absorption fine structure technique,” Phys. Rev. B 80, 144423.
Knížek, K., Hejtmánek, J., Jirák, Z., Tomeš, P., Henry, P., and André, G. (2009). “Neutron diffraction and heat capacity studies of PrCoO3 and NdCoO3 ,” Phys. Rev. B 79, 134103.
Korotin, M. A., Anisimov, V. I., Khomskii, D. I., Ezhov, S. Y., Solovyev, I. V., Khomski, D. I., and Sawatzky, G. A. (1996). “Intermediate-spin state and properties of LaCoO3 ,” Phys. Rev. B 54, 5309.
Kyomen, T., Asaka, Y., and Itoh, M. (2003). “Negative cooperative effect on the spin-state excitation in LaCoO3 ,” Phys. Rev. B 67, 144424.
Maris, G., Ren, Y., Volotchaev, V., Zobel, C., Lorenz, T., and Palstra, T. (2003). “Evidence for orbital ordering in LaCoO3 ,” Phys. Rev. B 67, 224423.
Noguchi, S., Kawamata, S., Okuda, K., Nojiri, H., and Motokawa, M. (2002). “Evidence for the excited triplet of Co3+ in LaCoO3 ,” Phys. Rev. B 66, 094404.
Podlesnyak, A., Streule, S., Mesot, J., Medarde, M., Pomjakushina, E., Conder, K., Tanaka, A., Haverkort, M. V., and Khomskii, D. I. (2006). “Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states,” Phys. Rev. Lett. 97, 247208.
Potze, R. H., Sawatzky, G. A., and Abbate, M. (1995). “Possibility for an intermediate-spin ground state in the charge-transfer material SrCoO3 ,” Phys. Rev. B 51, 11501.
Prabhakaran, D., Boothroyd, A. T., Wondre, F. R. and Prior, T. J. (2005). “Bulk single crystal growth and magnetic studies of La 1−xSr xCoO3+δ ,” J. Cryst. Growth 275, e827.
Radaelli, P. G. and Cheong, S. W. (2002). “Structural phenomena associated with the spin-state transition in LaCoO3 ,” Phys. Rev. B 66, 094408.
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192, 55.
Schmidt, R., Wu, J., Leighton, C., and Terry, I. (2009). “Dielectric response to the low-temperature magnetic defect structure and spin state transition in polycrystalline LaCoO3 ,” Phys. Rev. B 79, 125105.
Senaris-Rodriguez, M. A. and Goodenough, J. B. (1995). “Magnetic and transport properties of the system La1−xSrxCoO3−δ (0 < x ≤ 0.50),” J. Solid State Chem. 118, 323.
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and cobaltites,” Acta Crystallogr. Sect. A 32, 751.
Siurakshina, L., Paulus, B., Yushankhai, V., and Sivachenko, E. (2010). “Quantum chemical study of Co3+ spin states in LaCoO3 ,” Eur. Phys. J. B 74, 5361.
Zobel, C., Kriener, M., Bruns, D., Baier, J., Grüninger, M., Lorenz, T., Reutler, P., and Revcolevschi, A. (2002). “EXAFS and X-ray diffraction study of LaCoO3 across the spin-state transition,” Phys. Rev. B 66, R020402.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed