Skip to main content Accessibility help
×
×
Home

Characterizing nanoparticles with a laboratory diffractometer: from small-angle to total X-ray scattering

  • Marco Sommariva (a1), Milen Gateshki (a1), Jan-André Gertenbach (a1), Joerg Bolze (a1), Uwe König (a1), Bogdan Ştefan Vasile (a2) and Vasile-Adrian Surdu (a2)...
Abstract

X-ray diffraction and scattering on a single multipurpose X-ray platform have been used to probe the structure, composition, and thermal behavior of TiO2 nanoparticles ranging in size from 1 to 10 nm. Ambient and non-ambient Bragg diffraction, small-angle X-ray scattering (SAXS), as well as total scattering and pair-distribution function (PDF) analysis are combined to obtain a comprehensive picture of the samples. At these ultrasmall particle-size dimensions, SAXS and PDF prove powerful in distinguishing the salient features of the materials, in particular the size distribution of the primary particles (SAXS) and the identification of the TiO2 polymorphs (PDF). Structural features determined by X-ray scattering techniques are corroborated by high-resolution transmission electron microscopy. The elemental make-up of the materials has been measured using X-ray fluorescence spectrometry and energy-dispersive X-ray analysis.

Copyright
Corresponding author
a)Author to whom correspondence should be addressed. Electronic mail: marco.sommariva@panalytical.com
References
Hide All
Balzar, D., Audebrand, N., Daymond, M. R., Fitch, A., Hewat, A., Langford, J. I., Le Bail, A., Louër, D., Masson, O., McCowan, C. N., Popa, N. C., Stephens, P. W., and Toby, B. H. (2004). “Size–strain line-broadening analysis of the ceria round-robin sample,” J. Appl. Crystallogr. 37, 911924.
Ding, X. -Z., Liu, X. -H., and He, Y. -Z. (1996). “Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders,” J. Mater. Sci. Lett. 15, 17891791.
Egami, T. and Billinge, S. J. L. (2012). Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Elsevier, Amsterdam).
Ermokhina, N. I., Nevinskiy, V. A., Manorik, P. A., Ilyin, V. G., Novichenko, V. N., Shcherbatiuk, M. M., Klymchuk, D. O., Tsyba, M. M., and Puziy, A. M. (2013). “Synthesis and characterization of thermally stable large-pore mesoporous nanocrystalline anatase,” J. Solid State Chem. 200, 9098.
Farrow, C. L., Juhás, P., Liu, J. W., Bryndin, D., Bozin, E. S., Bloch, J., Proffen, Th., and Billinge, S. J. L. (2007). “PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals,” J. Phys.: Condens. Matter 19, 335219335225.
Grey, I. E. and Wilson, N. C. (2007). “Titanium vacancy defects in sol–gel prepared anatase,” J. Solid State Chem. 180, 670678.
Hanaor, D. A. H. and Sorrell, C. C. (2011). “Review of the anatase to rutile phase transformation,” J. Mater. Sci. 46, 855.
Howell, R. C., Proffen, T., and Conradson, S. D. (2006). “Pair distribution function and structure factor of spherical particles,” Phys. Rev. B 73, 094107094114.
ICDD (2013). PDF-4+ 2013 (Database), edited by Dr. Kabekkodu, Soorya, International Centre for Diffraction Data, Newtown Square, PA, USA.
Juhás, P., Davis, T., Farrow, C. L., and Billinge, S. J. L. (2013). “PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions,” J. Appl. Crystallogr. 46, 560566.
Kim, B. H., Hackett, M. J., Park, J., and Hyeon, T. (2014). “Synthesis, characterization, and application of ultrasmall nanoparticles,” Chem. Mater. 26(1), 5971.
Reiss, C. A., Kharchenko, A., and Gateshki, M. (2012). “On the use of laboratory X-ray diffraction equipment for Pair Distribution Function (PDF) studies,” Z. Kristallogr. 227, 257261.
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.
Sommariva, M. (2013). “Multi-technique approach for nanoparticles characterization on a laboratory X-ray diffractometer,” Solid State Phenom. 203–204, 1720.
te Nijenhuis, J., Gateshki, M., and Fransen, M. J. (2009). “Possibilities and limitations of X-ray diffraction using high-energy X-rays on a laboratory system,” Z. Kristallogr. Suppl. 30, 163169.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed