Skip to main content
×
×
Home

Conformational phase transition of deuterated p-bromobenzyl alcohol as studied by neutron powder diffraction

  • M. Mizuno (a1), M. Hamada (a1), M. Hashimoto (a2), M. Harada (a2), K. Eda (a2), K. Yamamura (a2), T. Kamiyama (a3) and K. Oikawa (a3)...
Abstract

A neutron powder diffraction study on the crystal structure of the title compound (p-Br–C6D4–CD2–OD) confirmed that a first-order phase transition at Tt1=229 K accompanied a drastic change in the molecular conformation caused by a discontinuous rotational shift of the hydroxyl hydrogen atom around the C(D2)–O(D) bond. At T<Tt1, a contraction of the unit cell volume of ∼1% was found when compared to that of the normal compound (p-Br–C6H4–CH2–OH).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Conformational phase transition of deuterated p-bromobenzyl alcohol as studied by neutron powder diffraction
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Conformational phase transition of deuterated p-bromobenzyl alcohol as studied by neutron powder diffraction
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Conformational phase transition of deuterated p-bromobenzyl alcohol as studied by neutron powder diffraction
      Available formats
      ×
Copyright
Corresponding author
a)Author to whom correspondence should be addressed; Electronic mail: mizuno@wriron1.s.kanazawa-u.ac.jp
References
Hide All
Aonuma, S., Sawa, H., and Kato, R., (1995). “Chemical pressure effect by selective deuteration in the molecular-based conductor, 2,5-dimethyl-N,N-dicyano-p-benzoquinone immine-copper salt, (DMe-DCNQI)2Cu,J. Chem. Soc., Perkin Trans. 2 JCPKBH 2, 15411549. pkb, JCPKBH
Hashimoto, M.and Harada, M., (2003). “Conformational phase transitions associated with reversal of hydrogen bond direction in 4-chloro- and 4-bromobenzyl alcohols. An X-ray study,” Z. Naturforsch., A: Phys. Sci. ZNASEI 58, 6367. zna, ZNASEI
Hashimoto, M., Harada, M., Mizuno, M., Hamada, M., Ida, T., and Suhara, M., (2002). “Phase transitions, hydrogen bond and crystal dynamics of p-methylbenzyl alcohol as studied by single crystal X-ray diffraction and 2H NMR,” Z. Naturforsch., A: Phys. Sci. ZNASEI 57, 388394. zna, ZNASEI
Hashimoto, M., Monobe, Y., Terao, H., Niki, H., and Mano, M., (1998). “Phase transition and crystal dynamics of 4-bromobenzyl alcohol,” Z. Naturforsch., A: Phys. Sci. ZNASEI 53, 436441. zna, ZNASEI
Ohta, T., Izumi, F., Oikawa, K., and Kamiyama, T., (1997). “Rietveld analysis of intensity data taken on the TOF neutron diffractometer VEGA,” Physica B PHYBE3 234–236, 10931095. phb, PHYBE3
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 74 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th August 2018. This data will be updated every 24 hours.