Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 87
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Berecz, Tibor Jenei, Péter Csóré, András Lábár, János Gubicza, Jenő and Szabó, Péter János 2016. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite. Materials Characterization, Vol. 113, p. 117.

    Fargas, G. Roa, J.J. and Mateo, A. 2016. Influence of pre-existing martensite on the wear resistance of metastable austenitic stainless steels. Wear, Vol. 364-365, p. 40.

    Gencalp Irizalp, S. and Saklakoglu, N. 2016. Reference Module in Materials Science and Materials Engineering.

    Gubicza, Jenő El-Tahawy, Moustafa Huang, Yi Choi, Hyelim Choe, Heeman Lábár, János L. and Langdon, Terence G. 2016. Microstructure, phase composition and hardness evolution in 316L stainless steel processed by high-pressure torsion. Materials Science and Engineering: A, Vol. 657, p. 215.

    Gubicza, J. Farbaniec, L. Csiszár, G. Sadat, T. Couque, H. and Dirras, G. 2016. Microstructure and strength of nickel subjected to large plastic deformation at very high strain rate. Materials Science and Engineering: A, Vol. 662, p. 9.

    Hao, Ting Tang, Haiyin Luo, Guangnan Wang, Xianping Liu, Changsong and Fang, Qianfeng 2016. Enhancement effect of inter-pass annealing during equal channel angular pressing on grain refinement and ductility of 9Cr1Mo steel. Materials Science and Engineering: A, Vol. 667, p. 454.

    Isik, Murat Niinomi, Mitsuo Cho, Ken Nakai, Masaaki Liu, Huihong Yilmazer, Hakan Horita, Zenji Sato, Shigeo and Narushima, Takayuki 2016. Microstructural evolution and mechanical properties of biomedical Co–Cr–Mo alloy subjected to high-pressure torsion. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 59, p. 226.

    Riahi, K. Messaoui, I. Cheikhrouhou-Koubaa, W. Mercone, S. Leridon, B. Koubaa, M. and Cheikhrouhou, A. 2016. Effect of synthesis route on the structural, magnetic and magnetocaloric properties of La0.78Dy0.02Ca0.2MnO3 manganite: A comparison between sol-gel, high-energy ball-milling and solid state process. Journal of Alloys and Compounds, Vol. 688, p. 1028.

    Shakibi Nia, N. Creus, J. Feaugas, X. and Savall, C. 2016. Influence of metallurgical parameters on the electrochemical behavior of electrodeposited Ni and Ni–W nanocrystalline alloys. Applied Surface Science, Vol. 370, p. 149.

    Yang, Tao Guo, Xiping and Luo, Yucheng 2016. Microstructural evolution of mechanically alloyed Mo–Si–B–Zr–Y powders. International Journal of Refractory Metals and Hard Materials, Vol. 56, p. 35.

    Zhou, P. Liang, Z.Y. Liu, R.D. and Huang, M.X. 2016. Evolution of dislocations and twins in a strong and ductile nanotwinned steel. Acta Materialia, Vol. 111, p. 96.

    Chung, Chin-Chin Wang, Shih-Wei Chen, Yen-Chun Ju, Chien-Ping and Chern Lin, Jiin-Huey 2015. Effect of cold rolling on structure and tensile properties of cast Ti–7.5Mo alloy. Materials Science and Engineering: A, Vol. 631, p. 52.

    Fargas, G. Roa, J.J. and Mateo, A. 2015. Effect of shot peening on metastable austenitic stainless steels. Materials Science and Engineering: A, Vol. 641, p. 290.

    Freitas Cabral, A.J. Peña Serna, J. Rache Salles, B. Novak, M.A. Pinto, A.L. and Rocha Remédios, C.M. 2015. Exchange bias effect in polycrystalline NiO/NiMn2O4 composite. Journal of Alloys and Compounds, Vol. 630, p. 74.

    Kumar, Hitanshu Barman, P.B. and Singh, Ragini Raj 2015. Effect of size and shell: Enhanced optical and surface properties of CdS, ZnS and CdS/ZnS quantum dots. Physica E: Low-dimensional Systems and Nanostructures, Vol. 67, p. 168.

    Kursun, Celal and Gogebakan, Musa 2015. Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying. Journal of Alloys and Compounds, Vol. 619, p. 138.

    Liang, Z.Y. Wang, X. Huang, W. and Huang, M.X. 2015. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel. Acta Materialia, Vol. 88, p. 170.

    Liang, Z.Y. Huang, W. and Huang, M.X. 2015. Suppression of dislocations at high strain rate deformation in a twinning-induced plasticity steel. Materials Science and Engineering: A, Vol. 628, p. 84.

    TANAKA, Keisuke KOIKE, Yuuki SANO, Katsuki TANAKA, Hiroto MACHIYA, Shutaro SHOBU, Takahisa and KIMACHI, Hirohisa 2015. Microstructural Characterization of Electrodeposited Nanocrystalline Nickel Films by X-Ray Diffraction. Journal of the Society of Materials Science, Japan, Vol. 64, Issue. 7, p. 528.

    Tozman, P. Venkatesan, M. Zickler, G. A. Fidler, J. and Coey, J. M. D. 2015. Enhanced energy product in Y-Co-Fe magnets intermediate between Nd-Fe-B and ferrite. Applied Physics Letters, Vol. 107, Issue. 3, p. 032405.


Correlation between subgrains and coherently scattering domains

  • T. Ungár (a1), G. Tichy (a2), J. Gubicza (a2) and R. J. Hellmig (a3)
  • DOI:
  • Published online: 01 March 2012

Crystallite size determined by X-ray line profile analysis is often smaller than the grain or subgrain size obtained by transmission electron microscopy, especially when the material has been produced by plastic deformation. It is shown that besides differences in orientation between grains or subgrains, dipolar dislocation walls without differences in orientation also break down coherency of X-rays scattering. This means that the coherently scattering domain size provided by X-ray line profile analysis provides subgrain or cell size bounded by dislocation boundaries or dipolar walls.

Corresponding author
a)Electronic mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

N. Audebrand , S. Raite , and D. Louër (2003). “The layer crystal structure of [In2(C2O4)3(H2O)3]∙7H2O and microstructure of nanocrystalline In2O3 obtained from thermal decomposition,” Solid State Sci.SSSCFJ1293-25585, 783794.

I. Bakonyi , E. Tóth-Kádár , L. Pogány , A. Cziráki , I. Geröcs , K. Varga-Josepovits , B. Arnold , and K. Wetzig (1996). “Preparation and characterization of dc-plated nanocrystalline nickel electrodeposits,” Surf. Coat. Technol.SCTEEJ0257-897278, 124136.

D. Balzar , N. Audebrand , M. R. Daymond , A. Fitch , A. Hewat , J. I. Langford , A. Le Bail , D. Louër , O. Masson , C. N. McCowan , N. C. Popa , P. W. Stephens , and B. H. Toby (2004). “Size-strain line-broadening analysis of the ceria round-robin sample,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188980402255137, 911924.

E. F. Bertaut (1950). “Raies de Debye-Scherrer et repartition des dimensions des domaines de Bragg dans les poudres polycristallines,” Acta Crystallogr.ACCRA90365-110X10.1107/S0365110X500000453, 1418.

R. E. Bolmaro , H. G. Brokmeier , J. W. Signorelli , A. Fourtz , and M. A. Bertinetti (2004). “Interaction between phases in Co-deforming two-phase materials: The role of dislocation arrangements,” in Diffraction Analysis of the Microstructure of Materials, edited by E. J. Mittemeijer and P. Scardi (Springer, Berlin), 391 pp.

A. Boulle , C. Legrand , R. Guinebretière , J. P. Mercurio , and A. Dauger (2001). “Planar faults in layered bi-containing perovskites studied by X-ray diffraction line profile analysis,” J. Appl. Crystallogr.JACGAR0021-889834, 699703.

R. W. Cheary , E. Dooryhee , P. Lynch , N. Armstrong , and S. Dligatch (2000). “X-ray diffraction line broadening from thermally deposited gold films,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188980000993633, 12711283.

R. E. Dinnebier , R. Von Dreele , P. W. Stephens , S. Jelonek , and J. Sieler (1999). “Structure of sodium para-hydroxybenzoate NaO2C–C6H4OH by powder diffraction: application of a phenomenological model of anisotropic peak width,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188989900523332, 761769.

E. Estevez-Rams , M. Leoni , P. Scardi , B. Aragon-Fernandez , and H. Fuess (2003). “On the powder diffraction pattern of crystals with stacking faults,” Philos. Mag.PMHABF1478-643583, 40454057.

J. Gil Sevillano and E. Aernoudt (1987). “Low energy dislocation structures in highly deformed materials,” Mater. Sci. Eng.MSCEAA0025-541610.1016/0025-5416(87)90441-186, 3551.

I. Groma (1998). “X-ray line broadening due to an inhomogeneous dislocation distribution,” Phys. Rev. BPRBMDO0163-182910.1103/PhysRevB.57.753557, 75357542.

I. Groma , T. Ungár , and M. Wilkens (1988). “Asymmetric X-ray line broadening of plastically deformed crystals. 1. Theory,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188988700917821, 4753.

J. Gubicza , G. Ribárik , I. Bakonyi , and T. Ungár (2001). “Crystallite-size distribution and dislocation structure in nanocrystalline HfNi5 determined by X-ray diffraction profile analysis,” J. Nanosci. Nanotechnol.JNNOAR1533-488010.1166/jnn.2001.0391, 343348.

J. Gubicza , J. Szépvölgyi , I. Mohai , G. Ribárik , and T. Ungár (2000a). “The effect of heat-treatment on the grain-size of nanodisperse plasmathermal silicon nitride powder,” J. Mater. Sci.JMTSAS0022-246110.1023/A:100480060760535, 37113717.

J. Gubicza , J. Szépvölgyi , I. Mohai , L. Zsoldos , and T. Ungár (2000b). “Particle size distribution and the dislocation density determined by high resolution X-ray diffraction in nanocrystalline silicon nitride powders,” Mater. Sci. Eng. A 280, 263269.

D. A. Hughes and N. Hansen (1993). “Microstructural evolution in nickel during rolling from intermediate to large strains,” Metall. Trans. AMTTABN0360-213324, 20212037.

D. A. Hughes and N. Hansen (2000). “Microstructure and strength of nickel at large strains,” Acta Mater.ACMAFD1359-645410.1016/S1359-6454(00)00082-348, 29853004.

D. A. Hughes and W. D. Nix (1989). “Strain hardening and substructural evolution in Ni–Co solid solutions at large strains,” Mater. Sci. Eng., AMSAPE30921-509310.1016/0921-5093(89)90627-8122, 153172.

T. Ida , S. Shimazaki , H. Hibino , and H. Toraya (2003). “Diffraction peak profiles from spherical crystallites with lognormal size distribution,” J. Appl. Crystallogr.JACGAR0021-889836, 11071115.

C. E. Krill and R. Birringer (1998). “Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis,” Philos. Mag. APMAADG0141-861010.1080/01418619825428177, 621640.

M. A. Krivoglaz (1996). X-ray and Neutron Diffraction in Nonideal Crystals (Springer, Berlin).

D. Kuhlmann-Wilsdorf (2002). “The LES theory of solid plasticity,” in Dislocations in Solids, edited by F. R. N. Nabarro and M. S. Duesbery (Elsevier Science, Amsterdam), 211 pp.

J. I. Langford , A. Boultif , J. P. Auffrédic , and D. Louër (1993). “The use of pattern decomposition to study the combined X-ray diffraction effects of crystallite size and stacking faults in ex-oxalate zinc oxide,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188989200768426, 2233.

J. I. Langford and D. Louër (1996). “Powder diffraction,” Rep. Prog. Phys.RPPHAG0034-488510.1088/0034-4885/59/2/00259, 131234.

J. I. Langford , D. Louër , and P. Scardi (2000). “Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188980000460X33, 964974.

A. Le Bail and D. Louër (1978). “Smoothing and validity of crystallite-size distributions from X-ray line-profile analysis,” J. Appl. Crystallogr.JACGAR0021-889811, 5055.

M. Leoni and P. Scardi (2004). “Nanocrystalline domain size distributions from powder diffraction data,” J. Appl. Crystallogr.JACGAR0021-889837, 629634.

L. E. Levine and R. Thomson (1997). “X-ray scattering by dislocations in crystals. General theory and application to screw dislocations,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ0108-767310.1107/S010876739700598953, 590602.

D. Louër , J. P. Auffrédic , J. I. Langford , D. Ciosmak , and J. C. Niepce (1983). “A precise determination of the shape, size and distribution of size of crystallites in zinc oxide by X-ray line-broadening analysis,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188988301023716, 183191.

H. Mughrabi (1983). “Dislocation wall and cell structures and long-range internal-stresses in deformed metal crystals,” Acta Metall.AMETAR0001-616010.1016/0001-6160(83)90007-X31, 13671379.

H. Mughrabi , T. Ungár , W. Kienle , and M. Wilkens (1986). “Long-range internal-stresses and asymmetric X-ray line broadening in tensile deformed [001]-oriented copper single crystals,” Philos. Mag. APMAADG0141-861053, 793813.

I. C. Noyan and J. B. Cohen (1987). Residual Stress (Springer, New York).

G. Ribárik , T. Ungár , and J. Gubicza (2001). “MWP-fit: A program for multiple whole profile fitting of diffraction profiles by ab-initio theoretical functions,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188980101145134, 669676.

P. G. Sanders , G. E. Fougere , L. J. Thompson , J. A. Eastman , and J. R. Weertman (1997). “Improvements in the synthesis and compaction of nanocrystalline materials,” Nanostruct. Mater.NMAEE70965-977310.1016/S0965-9773(97)00167-08, 243252.

P. Scardi and M. Leoni (1999). “Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188989900374X32, 671682.

P. Scardi and M. Leoni (2002). “Whole powder pattern modelling,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ0108-767358, 190200.

P. Scardi , M. Leoni , and R. Delhez (2004). “Line broadening analysis using integral breadth methods: A critical review,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188980400458337, 381390.

P. W. Stephens (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188989800600132, 281288.

Ch. D. Terwilliger and Y. M. Chiang (1995). “Size dependent solute segregation and total solubility in ultrafine polycrystals-Ca in TiO2,” Acta Metall. Mater.AMATEB0956-715110.1016/0956-7151(94)00231-643, 319328.

E. Tóth-Kádár , I. Bakonyi , A. Sólyom , J. Hering , G. Konczos , and F. Pavlyák (1987). “Preparation and characterization of electrodeposited amorphous Ni–P alloys,” Surf. Coat. Technol.SCTEEJ0257-897231, 3143.

M. M. J. Treacy , J. M. Newsam , and M. W. Deem (1991). “A general recursion method for calculating diffracted intensities from crystals containing planar faults,” Proc. R. Soc. London, Ser. APRLAAZ1364-5021433, 499520.

T. Ungár and A. Borbély (1996). “The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis,” Appl. Phys. Lett.APPLAB0003-695110.1063/1.11795169, 31733175.

T. Ungár , A. Borbély , G. R. Goren-Muginstein , S. Berger , and A. R. Rosen (1999). “Particle-size, size distribution and dislocations in nanocrystalline tungsten-carbide,” Nanostruct. Mater.NMAEE70965-977310.1016/S0965-9773(99)00023-911, 103113.

T. Ungár , J. Gubicza , G. Ribárik , and A. Borbély (2001). “Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188980100371534, 298310.

T. Ungár , P. Martinetto , G. Ribárik , E. Dooryhee , P. Walter , and M. Anne (2002). “Revealing the powdering methods of black makeup in Ancient Egypt by fitting microstructure based Fourier coefficients to the whole x-ray diffraction profiles of galena,” J. Appl. Phys.JAPIAU0021-897910.1063/1.142979291, 24552465.

T. Ungár and G. Tichy (1999). “The effect of dislocation contrast on X-ray line profiles in untextured polycrystals,” Phys. Status Solidi APSSABA0031-896510.1002/(SICI)1521-396X(199902)171:2<425::AID-PSSA425>3.0.CO;2-W171, 425434.

R. Z. Valiev , E. V. Kozlov , Yu. F. Ivanov , J. Lian , A. A. Nazarov , and B. Baudelet (1994). “Deformation behavior of ultra-fine grained copper,” Acta Metall. Mater.AMATEB0956-715110.1016/0956-7151(94)90326-342, 24672476.

J. G. M. van Berkum , A. C. Vermuelen , R. Delhez , Th. H. de Keijser , and E. J. Mittemeijer (1994). “Applicabilities of the Warren-Averbach analysis and an alternative analysis for separation of size and strain broadening,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S002188989301056827, 345357.

M. Wilkens , T. Ungár , and H. Mughrabi (1987). “X-ray rocking curve broadening of tensile deformed [001]-oriented copper single crystals,” Phys. Status Solidi APSSABA0031-8965104, 157170.

M. J. Zehetbauer , J. Kohout , E. Schafler , F. Sachslehner , and A. Dubravina (2004). “Plastic deformation of nickel under high hydrostatic pressure,” J. Alloys Compd.JALCEU0925-8388378, 329334.

A. P. Zhilyaev , J. Gubicza , G. Nurislamova , Á Révész , S. Suriñach , M. D. Baró , and T. Ungár (2003). “Microstructural Characterization of Ultrafine-Grained Nickel,” Phys. Status Solidi APSSABA0031-896510.1002/pssa.200306608198, 263271.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *