Skip to main content
×
×
Home

Crystal structure of a birefringent andradite–grossular from Crowsnest Pass, Alberta, Canada

  • Sytle M. Antao (a1) and Allison M. Klincker (a1)
Abstract

The structure of a birefringent andradite–grossular sample was refined using single-crystal X-ray diffraction (SCD) and synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe results indicate a homogeneous composition of {Ca2.88Mn2+ 0.06Mg0.04Fe2+ 0.03}Σ3[Fe3+ 1.29Al0.49Ti4+ 0.17Fe2+ 0.06] Σ2(Si2.89Al0.11) Σ3O12. The Rietveld refinement reduced χ 2 = 1.384 and overall R (F 2) = 0.0315. The HRPXRD data show that the sample contains three phases. For phase-1, the weight %, unit-cell parameter (Å), distances (Å), and site occupancy factor (sof) are 62.85(7)%, a = 12.000 06(2), average <Ca–O> = 2.4196, Fe–O = 1.9882(5), Si–O = 1.6542(6) Å, Ca(sof) = 0.970(2), Fe(sof) = 0.763(1), and Si(sof) = 0.954(2). The corresponding data for phase-2 are 19.14(9)%, a = 12.049 51(2), average <Ca–O> = 2.427, Fe–O = 1.999(1), Si–O = 1.665(1) Å, Ca(sof) = 0.928(4), Fe(sof) = 0.825(3), and Si(sof) = 0.964(4). The corresponding data for phase-3 are 18.01(9)%, a = 12.019 68(3), average <Ca–O> = 2.424, Fe–O = 1.992(2), Si–O = 1.658(2) Å, Ca(sof) = 0.896(5), Fe(sof) = 0.754(4), and Si(sof) = 0.936(5). The fine-scale coexistence of the three phases causes strain that arises from the unit-cell and bond distances differences, and gives rise to strain-induced birefringence. The results from the SCD are similar to the dominant phase-1 obtained by the HRPXRD, but the SCD misses the minor phases.

Copyright
Corresponding author
a) Author to whom correspondence should be addressed. Electronic mail: antao@ucalgary.ca.
References
Hide All
Adamo, I., Gatta, G. D., Rotitoti, N., Diella, V., and Pavese, A. (2010). “Green andradite stones: gemological and mineralogical characterisation,” Eur. J. Mineral. 23, 91100.
Antao, S. M. (2013a). “Three cubic phases intergrown in a birefringent andradite–grossular garnet and their implications,” Phys. Chem. Miner. 40, 705716.
Antao, S. M. (2013b). “The mystery of birefringent garnet: is the symmetry lower than cubic?,” Powder Diffr. doi: 10.1017/S0885715613000523.
Antao, S. M. and Hassan, I. (2010). “A two-phase intergrowth of genthelvite from Mont Saint-Hilaire, Quebec,” Can. Mineral. 48, 12171223.
Antao, S. M. and Klincker, A. M. (2013). “Origin of birefringence in andradite from Arizona, Madagascar, and Iran,” Phys. Chem. Miner. 40, 575586.
Antao, S. M., Hassan, I., Wang, J., Lee, P. L., and Toby, B. H. (2008). “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite.,” Can. Mineral. 46, 15011509.
Antao, S. M., Klincker, A. M., and Round, S. A. (2013a). “Origin of birefringence in common silicate garnet: intergrowth of different cubic phases,” Am. Geophys. Union Conference, Cancun, Mexico, 14–17 May, 2013.
Antao, S. M., Klincker, A. M., and Round, S. A. (2013b). “Some garnets are cubic and birefringent, why?,” Conference, Hawaii, USA, 20–24 July, 2013.
Armbruster, T. (1995). “Structure refinement of hydrous andradite, Ca3Fe1.54Mn0.02Al0.26(SiO4)1.65(O4H4)1.35, from the Wessels mine, Kalahari manganese field, South Africa,” Eur. J. Mineral. 7, 12211225.
Armbruster, T., Birrer, J., Libowitzky, E., and Beran, A. (1998). “Crystal chemistry of Ti-bearing andradites,” Eur. J. Mineral. 10, 907921.
Baikie, T., Schreyer, M. K., Wong, C. L., Pramana, S. S., Klooster, W. T., Ferraris, C., McIntyre, G. J., and White, T. J. (2012). “A multi-domain gem-grade Brazilian apatite,” Am. Mineral. 97, 15741581.
Basso, R., Cimmino, F., and Messiga, B. (1984a). “Crystal chemical and petrological study of hydrogarnets from a Fe-gabbro metarodingite (Gruppo Di Voltri, Western Liguria, Italy),” Neues Jahrbuch Fur Mineralogie-Abhandlungen 150, 247258.
Basso, R., Cimmino, F., and Messiga, B. (1984b). “Crystal-chemistry of hydrogarnets from three different microstructural sites of a basaltic metarodingite from the Voltri-Massif (Western Liguria, Italy),” Neues Jahrbuch Fur Mineralogie-Abhandlungen 148, 246258.
Chakhmouradian, A. R. and McCammon, C. A. (2005). “Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries,” Phys. Chem. Miner. 32, 277289.
Chakhmouradian, A. R., Cooper, M. A., Medici, L., Hawthorne, F. C., and Adar, F. (2008). “Fluorine-rich hibschite from silicocarbonatite, Afrikanda complex, Russia: crystal chemistry and conditions of crystallization,” Can. Mineral. 46, 10331042.
Dingwell, D. B. and Brearley, M. (1985). “Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada,” Contrib. Mineral. Petrol. 90, 2935.
Ferro, O., Galli, E., Papp, G., Quartieri, S., Szakall, S., and Vezzalini, G. (2003). “A new occurrence of katoite and re-examination of the hydrogrossular group,” Eur. J. Mineral. 15, 419426.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystall. 27, 892900.
Frank-Kamenetskaya, O. V., Rozhdestvenskaya, L. V., Shtukenberg, A. G., Bannova, I. I., and Skalkina, Y. A. (2007). “Dissymmetrization of crystal structures of grossular–andradite garnets Ca3(Al, Fe)2(SiO4)3 ,” Struct. Chem. 18, 493503.
Ganguly, J., Cheng, W., and O'Neill, H. S. C. (1993). “Syntheses, volume, and structural changes of garnets in the pyrope–grossular join: implications for stability and mixing properties,” Am. Mineral. 78, 583593.
Griffen, D. T., Hatch, D. M., Phillips, W. R., and Kulaksiz, S. (1992). “Crystal chemistry and symmetry of a birefringent tetragonal pyralspite75-grandite25 garnet,” Am. Mineral. 77, 399406.
Heinemann, S., Sharp, T. G., Seifert, F., and Rubie, D. C. (1997). “The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12) – pyrope (Mg3Al2Si3O12), and garnet symmetry in the Earth's transition zone,” Phys. Chem. Miner. 24, 206221.
Hilton, E. (2000). Composition and Structure of Titanian Andradite from Magmatic and Hydrothermal Environments (University of British Columbia).
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). (Report LAUR 86-748). Los Alamos National Laboratory.
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15, 427432.
Locock, A. J. (2008). “An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets,” Comput. Geosci. 34, 17691780.
Nakatsuka, A., Yoshiasa, A., Yamanaka, T., Ohtaka, O., Katsura, T., and Ito, E. (1999). “Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12-MgSiO3 ,” Am. Mineral. 84, 11351143.
Novak, G. A. and Gibbs, G. V. (1971). “The crystal chemistry of the silicate garnets,” Am. Mineral. 56, 17691780.
Otwinowski, Z. and Minor, W. (1997). “Processing of X-ray diffraction data collected in oscillation mode,” In Methods in Enzymology: Macromolecular Crystallography, part A, V. 276, Eds. Carter, C.W. Jr. & Sweet, R.M., (Academic Press), pp. 307326.
Parise, J. B., Wang, Y., Gwanmesia, G. D., Zhang, J., Sinelnikov, Y., Chmielowski, J., Weidner, D. J., and Liebermann, R. C. (1996). “The symmetry of garnets on the pyrope (Mg3Al2Si3O12) – majorite (MgSiO3) join,” Geophys. Res. Lett. 23, 37993802.
Peterson, R. C., Locock, A. J., and Luth, R. W. (1995). “Positional disorder of oxygen in garnet: the crystal-structure refinement of schorlomite,” Can. Mineral. 33, 627631.
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.
Sacerdoti, M. and Passaglia, E. (1985). “The crystal structure of katoite and implications within the hydrogrossular group of minerals,” Bull. Miner. 108, 18.
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32, 751767.
Sheldrick, G. M. (1997). SHELXL-97-1. Program for crystal structure determination. Institut für Anorg. Chemie, Univ. of Göttingen, Göttingen, Germany.
Shtukenberg, A. G., Popov, D. Y., and Punin, Y. O. (2005). “Growth ordering and anomalous birefringence in ugrandite garnets,” Mineral. Mag. 69, 537550.
Smyth, J. R., Madel, R. E., McCormick, T. C., Munoz, J. L., and Rossman, G. R. (1990). “Crystal-structure refinement of a F-bearing spessartine garnet,” Am. Mineral. 75, 314318.
Takéuchi, Y., Haga, N., Umizu, S., and Sato, G. (1982). “The derivative structure of silicate garnets in grandite,” Z. Kristallogr. 158, 5399.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.
Wildner, M. and Andrut, M. (2001). “The crystal chemistry of birefringent natural uvarovites: part II. Single-crystal X-ray structures,” Am. Mineral. 86, 12311251.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Antao Supplementary Material
Supplementary Material

 Unknown (11 KB)
11 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed