Skip to main content
×
Home

The crystal structure of tin sulphate, SnSO4, and comparison with isostructural SrSO4, PbSO4, and BaSO4

  • Sytle M. Antao (a1)
Abstract

The crystal structure of tin (II) sulphate, SnSO4, was obtained by Rietveld refinement using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The structure was refined in space group Pbnm. The unit-cell parameters for SnSO4 are a = 7.12322(1), b = 8.81041(1), c = 5.32809(1) Å, and V = 334.383(1) Å3. The average 〈Sn–O〉 [12] distance is 2.9391(4) Å. However, the Sn2+cation has a pyramidal [3]-coordination to O atoms and the average 〈Sn–O〉 [3] = 2.271(1) Å. If Sn is considered as [12]-coordinated, SnSO4 has a structure similar to barite, BaSO4, and its structural parameters are intermediate between those of BaSO4 and PbSO4. The tetrahedral SO4 group has an average 〈S–O〉 [4] = 1.472(1) Å in SnSO4. Comparing SnSO4 with the isostructural SrSO4, PbSO4, and BaSO4, several well-defined trends are observed. The radii, rM, of the M2+(=Sr, Pb, Sn, and Ba) cations and average 〈S–O〉 distances vary linearly with V because of the effective size of the M2+cation. Based on the trend for the isostructural sulphates, the average 〈Sn–O〉 [12] distance is slightly longer than expected because of the lone pair of electrons on the Sn2+cation.

Copyright
Corresponding author
a)Author to whom correspondence should be addressed. Electronic mail: antao@ucalgary.ca
References
Hide All
Antao S. M. (2011). “Crystal-structure analysis of four mineral samples of anhydrite, CaSO4, using synchrotron high-resolution powder X-ray diffraction data,” Powder Diffr. 26, 326330.
Antao S. M. (2012). “Structural trends for celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4): confirmation of expected variations within the SO4 groups,” Am. Mineral. 97, 661665.
Antao S. M. and Hassan I. (2009). “The orthorhombic structure of CaCO3, SrCO3, PbCO3, and BaCO3: linear structural trends,” Can. Mineral. 47, 12451255.
Antao S. M., Hassan I., Wang J., Lee P. L. and Toby B. H. (2008). “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite,” Can. Mineral. 46, 15011509.
Crichton W. A., Parise J. B., Antao S. M., and Grzechnik A. (2005). “Evidence for monazite-, barite-, and AgMnO4 (distorted barite)-type structures of CaSO4 at high pressure and temperature,” Am. Mineral. 90, 2227.
Donaldson J. D. and Moser W. (1960). J. Chem. Soc. 40004003.
Donaldson J. D. and Puxley D. C. (1972). “The crystal structure of tin (II) sulphate,” Acta Cryst. B28, 864867.
Gillespie R. J. (1967). “Electron-pair repulsions and molecular shape,” Angew. Chem. 79, 885896.
Gillespie R. J. and Robinson E. A. (1996). “Electron-domains and the VSEPR model of molecular geometry,” Angew. Chem. 108, 539560.
Hawthorne F. C. and Ferguson R. B. (1975). “Anhydrite sulphates. II. Refinement of the crystal structure of anhydrite,” Can. Mineral. 13, 289292.
Hill R. J. (1977). “A further refinement of the barite structure,” Can. Mineral. 15, 522526.
Hinrichsen B., Dinnebier R. E., Liu H., and Jansen M. (2008). “The high pressure crystal structure of tin sulphate: a case study for maximal information recovery from 2D powder diffraction data,” Z. Kristallogr. 223, 195203.
Jacobsen S. D., Smyth J. R., Swope R. J. and Downs R. T. (1998). “Rigid-body character of the SO4 groups in celestine, anglesite and barite,” Can. Mineral. 36, 10531060.
James R. W. and Wood W. A. (1925). “The crystal structures of barytes, celestine, and anglesite,” Proc. R. Soc. A109, 598620.
Larson A. C. and Von Dreele R. B. (2000). General Structure Analysis System (GSAS). Report No. LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.
Lee P. L., Shu D., Ramanathan M., Preissner C., Wang J., Beno M. A., Von Dreele R. B., Ribaud L., Kurtz C., Antao S. M., Jiao X. and Toby B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15, 427432.
Miyake M., Minato I., Morikawa H., Iwai S.-I (1978). “Crystal structures and sulphate force constants of barite, celestite, and anglesite,” Am. Mineral. 63, 506510.
Rentzeperis P. J. (1962). “The crystal structure of the anhydrous stannous sulphate,” Z. Kristallogr. 117, 431.
Rietveld H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.
Shannon R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. A32, 751767.
Toby B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
Wang J., Toby B. H., Lee P. L., Ribaud L., Antao S. M., Kurtz C., Ramanathan M., Von Dreele R. B. and Beno M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.
Wills A. S. and Brown I. D. (1999). VaList. CEA, France. This is a freely available computer program.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 196 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.