Skip to main content
    • Aa
    • Aa

Automatic calibration of powder diffraction experiments using two-dimensional detectors

  • P. Rajiv (a1), B. Hinrichsen (a1), R. Dinnebier (a1), M. Jansen (a1) and M. Joswig (a2)...

Calibration of powder diffraction experiments using area detectors is essential to extract high quality one-dimensional powder diffraction pattern. Precise calibration necessitates a sensible characterization of the Debye-Scherrer rings formed on the detector plane. An algorithm, designed and developed to automate this process, is described in this paper. All the parameters required for an experimental calibration are extracted using robust pattern recognition techniques. Several image preprocessing methods are employed, reducing the computational cost but retaining high signal quality. A modified version of a one-dimensional Hough transformation is used to determine the final parameters of the ellipses. After extraction, the parameters are optimized using nonlinear least squares fit. The presented algorithm is insensitive to image artefacts and was successfully applied to a large number of calibration images. The performance of the algorithm is demonstrated by the comparison of results obtained from the presented automatic calibration method and an existing manual method.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

N. Bennett , R. Burridge , and N. Saito (1999). “A method to detect and characterize ellipses using Hough transform,” IEEE Trans. Pattern Anal. Mach. Intell.ITPIDJ0162-882810.1109/34.777377 21, 652657.

A. Cervellino , C. Giannini , A. Guagliardi , and M. Ladisa (2006). “Folding a two-dimensional powder diffraction image into a one-dimensional scan: a new procedure,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889806026690 39, 745748.

C. Dammer , P. Leleux , D. Villers , and M. Dosiere (1997). “Use of Hough Transform to determine the center of digitized X-ray diffraction patterns,” Nucl. Instrum. Methods Phys. Res. BNIMBEU0168-583X10.1016/S0168-583X(97)00440-0, 132, 214220.

L. Feng and Y. Fainman (1992). “Detection of a general ellipse by an optical Hough transform,” Appl. Opt.APOPAI0003-6935 31, 32593262.

R. Fisker , H. F. Poulson , J. Schou , J. M. Carstensen , and S. Garbe (1998). “Use of images-processing tools for texture analysis of high-energy synchrotron data,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889897016439 31, 647653.

A. P. Hammersley , S. O. Svensson , M. Hanfland , A. N. Fitch , and D. Häusermann (1996). “Two-dimensional detector software: from real detector to idealized image or two-theta scan,” High Press. Res.HPRSEL0895-7959 14, 235248.

Y. Lei and K. C. Wong (1999). “Ellipse detection based on symmetry,” Pattern Recogn. Lett.PRLEDG0167-865510.1016/S0167-8655(98)00127-5 20, 4147.

P. Norby (1997). “Synchrotron powder diffraction using imaging plates: crystal structure determination and Rietveld Refinement,” J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889896009995 30, 2130.

C. Schmidt , R. E. Dinnebier , U. Wedig , and M. Jansen (2007). “Crystal structure and chemical bonding of the high temperature phase of AgN3,” Inorg. Chem. INOCAJ0020-166910.1021/ic061963n 46(3), 907916.

M. Schreckenberg and M. Joswig (1993). “Kompensation von Rippenschatten in digitalen Thorax-Röntgenbildern” in Mustererkennung 1993, edited by S. J. Pöppl and H. Handels (Springer-Verlag, Berlin), pp. 522527.

T. Wessels , C. Baerlocher , and L. B. McCusker (1999). “Single-crystal-like diffraction data from polycrystalline materials,” ScienceSCIEAS0036-807510.1126/science.284.5413.477 284, 477479.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *