Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T06:13:35.963Z Has data issue: false hasContentIssue false

Effects of resolution in real and reciprocal spaces from a 2D detector at a high-energy synchrotron beamline

Published online by Cambridge University Press:  02 January 2018

Andrea Bernasconi*
Affiliation:
Università di Pavia, Pavia, Italy
Jonathan Wright
Affiliation:
ESRF – The European Synchrotron, Grenoble, France
*
a)Author to whom correspondence should be addressed. Electronic mail: andrea.bernasconi@unipv.it

Abstract

Different experimental conditions at a versatile high-energy beamline equipped with a two-dimensional detector have been compared for powder diffraction and pair distribution function (PDF) experiments. In particular, sample size and sample to detector distances have been evaluated on a standard sample, to evaluate their effects in both Q and real space. Two illustrative cases are also discussed. The average structure and local distortions in a BaTiO3 powder with 100 nm particle size show that spurious ripples in the PDF are suppressed by increased counting statistics. Effects of small amounts of a crystalline impurity phase on a SiO2.Al2O3.Na2O.CaO glass have been quantified.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernasconi, A., Diella, V., Marinoni, N., Pavese, A., and Francescon, F. (2012). “Influence of composition on some industrially relevant properties of traditional sanitary-ware glaze,” Ceram. Int. 38, 58595870.CrossRefGoogle Scholar
Bernasconi, A., Wright, J., and Harker, N. (2015). “Total scattering experiments on glass and crystalline materials at the ESRF on the ID11 beamline,” Powder Diffr. 30, S2S8.Google Scholar
Bernasconi, A., Dapiaggi, M., Bowron, D., Ceola, S., and Maurina, S. (2016). “Aluminosilicate-based glasses structural investigation by high-energy X-ray diffraction,” J. Mater. Sci. 51, 88458860.CrossRefGoogle Scholar
Bhalla, A. S., Gou, R., and Roy, R. (2000). “The perovskite structure: a review of its role in ceramic science and technology,” Mater. Res. Innov. 4, 326.Google Scholar
Cesar da Silva, J., Pacureanu, A., Yang, Y., Bohic, S., Morawe, C., Barrett, R. and Cloetens, P. (2017). “Efficient concentration of high-energy x-ray for diffraction-limited imaging resolution,” Optica 4(5), 492495.Google Scholar
Chandler, C. D., Roger, C., and Hampden-Smith, M. J. (1993). “Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors,” Chem. Rev. 93, 12051241.Google Scholar
Coelho, A. A. (2005). Topas-Academic Users Manual. Version 4.1.Google Scholar
Egami, T. and Billinge, S. J. L. (2003). Underneath the Bragg peak: structural analysis of complex material (Pergamon, Amsterdam, The Nederland).Google Scholar
Farrow, C. L., Juhas, P., Liu, J. W., Bryndin, D., Bozin, E. S., Bloch, J., Proffen, Th., and Billinge, S. J. L. (2007). “PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals,” J. Phys. Condens. Matter 19, 335219.Google Scholar
Hall, M. M. Jr., Veeraraghavan, V. G., Rubin, H., and Winchell, P. G. (1977). “The approximation of symmetric X-ray peaks by Pearson type VII distributions,” J. Appl. Crystallogr. 10, 6668.Google Scholar
Holton, J. M., Nielsen, C., and Frankel, K. A. (2012). “The point-spread function of fiber-coupled area detectors,” J. Synchrotron Radiat. 19, 10061011.Google Scholar
Jeong, I.-K., Heffner, R. H., Graf, M. J., and Billinge, S. J. L. (2003). “Lattice dynamics and correlated atomic motion from the atomic pair distribution function,” Phys. Rev. B 67, 104301.Google Scholar
Juhas, P., Davis, T., Farrow, C. L., and Billinge, S. J. L. (2013). “PDFgetx3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions,” J. Appl. Crystallogr. 46, 560566.Google Scholar
Kieffer, J. and Wright, J. (2013). “PyFAI: a Python library for high performance azimuthal integration on GPU,” Powder Diffr. 28, S339S350.Google Scholar
Kirkpatrick, P. and Baez, V. (1948). “Formation of optical images by X-rays,” J. Opt. Soc. Am. 38, 766774.Google Scholar
Kwei, G. H., Lawson, A. C., Billinge, S. J. L., and Cheong, S. W. (1993). “Structures of the ferroelectric phases of the barium titanate,” J. Phys. Chem. 97, 23682377.Google Scholar
Labiche, J. C., Mathon, O., Pascarelli, S., Newton, M. A., Ferre, G. G., Curfs, C., Vaughan, G., Homs, A., and Carreira, D. F. (2007). “Invited article: the fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis,” Rev. Sci. Instrum. 78, 091301091311.Google Scholar
Norby, P. (1997). “Synchrotron powder diffraction using imaging plates: crystal structure determination and Rietveld refinement,” J. Appl. Crystallogr. 30, 2130.Google Scholar
Petkov, V., Gateshki, M., Niederberger, M., and Ren, Y. (2006). “Atomic-scale structure of nanocrystalline BaxSr1−xTiO3 (x=1,0.5,0) by X-ray diffraction and the atomic pair distribution function technique,” Chem. Mater. 18, 814821.Google Scholar
Proffen, T., Page, K. L., McLain, S. E., Clausen, B., Darling, T. W., TenCate, J. A., Lee, S. Y., and Ustundag, E. (2005). “Atomic pair distribution function analysis of materials containing crystalline and amorphous phases,” Z. Kristallogr. 220, 10021008.CrossRefGoogle Scholar
Rabuffetti, F. A. and Brutchey, R. L. (2012). “Structural evolution of BaTiO3 nanocrystals synthesized at room temperature,” J. Am. Chem. Soc. 134, 94759487.Google Scholar
Shelby, J. (2005). Introduction to Glass Science and Technology (RSC, Cambridge).Google Scholar
Smith, M. B., Page, K., Siegrist, T., Redmond, P. L., Walter, E. C., Seshadri, R., Brus, L. E., and Steigenwald, M. L. (2008). “Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3 ,” J. Am. Chem. Soc. 130, 69556963.Google Scholar
Snigirev, A., Snigireva, I., Grigoriev, M., Yunkin, V., Di Michiel, M., Vaughan, G. & Kohn, V, and Kuznetsov, S. (2009). “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys. Conf. Ser. 186, 012072.Google Scholar
Soper, A. K. (2010a). “GudrunN and GudrunX: Programs for Correcting Raw Neutron and X-ray Diffraction Data to Differential Scattering Cross Section (ISIS Disordered Material Group, Didcot, UK).Google Scholar
Soper, A. K. (2010b). EPSRshell: A Users Guide (ISIS Disordered Material Group, Didcot, UK).Google Scholar
Vaughan, G., Wright, J., Bythkov, A., Rossat, M., Gleyzolle, H., Snigireva, I., and Snigirev, A. (2011). “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18, 125133.CrossRefGoogle ScholarPubMed
Wu, G., Rodrigues, B. L., and Coppens, P. (2002). “The correction of reflection intensities for incomplete absorption of high-energy x-rays in the CCD phosphor,” J. Appl. Crystallogr. 35, 356359.Google Scholar
Yavari, A. R., Le Moulec, A., Inoue, A., Nishiyama, N., Lupu, N., Matsubara, E., Botta, W. G., Vaughan, G., Di Michiel, M., and Kvick, A. (2005). “Excess free volume in metallic glasses measured by X-ray diffraction,” Acta Mater. 53, 16111619.Google Scholar