Skip to main content Accessibility help

Frontiers between crystal structure prediction and determination by powder diffractometry

  • Armel Le Bail (a1)

The fuzzy frontiers between structure determination by powder diffractometry and crystal structure prediction are discussed. The application of a search-match program combined with a database of more than 60 000 predicted powder diffraction patterns is demonstrated. Immediate structure solution (before indexing) is shown to be possible by this method if the discrepancies between the predicted crystal structure cell parameters and the actual ones are <1%. Incomplete chemistry of the hypothetical models (missing interstitial cations, water molecules, etc.) is not necessarily a barrier to a successful identification (in spite of inducing large intensity errors), provided the search-match is made with chemical restrictions on the elements present in both the virtual and experimental compounds.

Hide All
Allen, F.H. (2002). “The Cambridge Structural Database: A quarter of a million crystal structures and rising,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 58, 380388. acl, ASBSDK
Bergmann, J., Le Bail, A., Shirley, R., and Zlokazov, V. (2004). “Renewed interest in powder diffraction data indexing,” Z. Kristallogr.ZEKRDZ 219, 783790. zek, ZEKRDZ
Burla, M.C., Caliandro, R., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., and Siliqi, D. (2006). “Use of Patterson-based methods automatically to determine the structures of heavy-atom-containing proteins with up to 6000 non-hydrogen atoms in the asymmetric unit,” J. Appl. Crystallogr.JACGAR 39, 728734. acr, JACGAR
Catlow, C.R. A. (1997). Computer Modelling in Inorganic Crystallography (Academic Press, London).
Catlow, C.R. A., Gale, J.D., and Grimes, R.W. (1993). “Recent computational studies in solid state chemistry,” J. Solid State Chem.JSSCBI 106, 1326. jss, JSSCBI
Černý, R. and Favre-Nicolin, V. (2007). “Direct space methods of structure determination from powder diffraction: principles, guidelines and perspectives,” Z. Kristallogr.ZEKRDZ 222, 105113. zek, ZEKRDZ
Dadachov, M.S. and Le Bail, A. (1997). “Structure of zeolitic K2TiSi3O9⋅H2O determined ab initio from powder diffraction data,” Eur. J. Solid State Inorg. Chem.EJSCE5 34, 381390. ess, EJSCE5
Day, G.M., Motherwell, W.D. S., Ammon, H.L., Boerrigter, S.X. M., Della Valle, R.G., Venuti, E., Dzyabchenko, A., Dunitz, J.D., Schweizer, B., van Eijck, B.P., Erk, P., Facelli, J.C., Bazterra, V.E., Ferraro, M.B., Hofmann, D.W. M., Leusen, F.J. J., Liang, C., Pantelides, C.C., Karamertzanis, P.G., Price, S.L., Lewis, T.C., Nowell, H., Torrisi, A., Scheraga, H.A., Arnautova, Y.A., Schmidt, M.U., and Verwer, P. (2005). “A third blind test of crystal structure prediction,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 61, 511527. acl, ASBSDK
Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., and Margiolaki, I. (2005). “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” ScienceSCIEAS 309, 20402042. sci, SCIEAS
Férey, G., Serre, C., Mellot-Draznieks, C., Millange, F., Surblé, S., Dutour, J., and Margiolaki, I. (2004). “A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction,” Angew. Chem., Int. Ed.ACIEF5 43, 62966301. aqv, ACIEF5
Fischer, C.C., Tibbetts, K.J., Morgan, D., and Ceder, G. (2006). “Predicting crystal structure by merging data mining with quantum mechanics,” Nat. Mater.NMAACR 5, 641646. aj5, NMAACR
Foster, M.D., Friedrichs, O.D., Bell, R.G., Paz, F.A. A., and Klinowski, J. (2003). “Structural evaluation of systematically enumerated hypothetical uninodal zeolites,” Angew. Chem., Int. Ed.ACIEF5 42, 38963899. aqv, ACIEF5
Foster, M.D. and Treacy, M.M. J. (2003). Hypothetical Zeolites Database 〈〉.
Gale, J.D. (1997). “GULP: A computer program for the symmetry-adapted simulation of solids,” J. Chem. Soc., Faraday Trans.JCFTEV 93, 629637. jcf, JCFTEV
Gavezzotti, A. (1994). “Are crystal structures predictable?,” Acc. Chem. Res.ACHRE4 27, 309314. ach, ACHRE4
Hemon, A. and Courbion, G. (1990). “The NaF-CaF2-AlF3 system: Structures of β-NaCaAlF6 and Na4Ca4Al7F33,” J. Solid State Chem.JSSCBI 84, 153164. jss, JSSCBI
Hofmann, D.W. M. and Kuleshova, L. (2005). “New similarity index for crystal structure determination from X-ray powder diagrams,” J. Appl. Crystallogr.JACGAR 38, 861866. acr, JACGAR
Le Bail, A. (2003). PCOD: Predicted Crystallography Open Database 〈〉.
Le Bail, A. (2005). “Inorganic structure prediction with GRINSP,” J. Appl. Crystallogr.JACGAR 38, 389395. acr, JACGAR
Le Bail, A. (2007a). “Predicted corner-sharing titanium silicates,” Z. Kristallogr. ZEKRDZSuppl. 26, 202208. zek, ZEKRDZ
Le Bail, A. (2007b). “Inorganic structure prediction: Too much and not enough,” Solid State Phenom.DDBPE8 130, 16. ssq, DDBPE8
Le Bail, A. and Calvayrac, F. (2006). “Hypothetical AlF3 crystal structures,” J. Solid State Chem.JSSCBI 179, 31593166. jss, JSSCBI
Le Bail, A., Fourquet, J.L., and Bentrup, U. (1992). “τ-AlF3: Crystal structure determination from X-ray powder diffraction data. A new MX3 corner-sharing octahedra 3D network,” J. Solid State Chem.JSSCBI 100, 151159. jss, JSSCBI
Le Meins, J.-M., Cranswick, L.M. D., and Le Bail, A. (2003). “Results and conclusions of the internet based search/match round robin 2002,” Powder Diffr.PODIE2 18, 106113. pdj, PODIE2
Lufaso, M.W. and Woodward, P.M. (2001). “Prediction of the crystal structures of perovskites using the software SPuDS,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 57, 725738. acl, ASBSDK
Meden, A. (2006). “Inorganic crystal structure prediction – a dream coming true?Acta Chim. Slov. 53, 148152.
Mellot-Draznieks, C. and Férey, G. (2005). “Assembling molecular species into 3D frameworks: Computational design and structure solution of hybrid materials,” Prog. Solid State Chem.PSSTAW 33, 187197. psc, PSSTAW
Mellot-Draznieks, C., Girard, S., Férey, G., Schön, J.C., Cancarevic, Z., and Jansen, M. (2002). “Computational design and prediction of interesting not-yet-synthesized structures of inorganic materials by using building unit concepts,” Chem.-Eur. J.CEUJED 8, 41024113. cej, CEUJED
Mellot-Draznieks, C., Newsam, J.M., Gorman, A.M., Freeman, C.M., and Férey, G. (2000). “De novo prediction of inorganic structures developed through automated assembly of secondary building units (AASBU method),” Angew. Chem., Int. Ed.ACIEF5 39, 22702275. aqv, ACIEF5
Milman, V. and Winkler, B. (1999). “Ab initio modeling in crystallography,” Int. J. Inorg. Mater.IJIMCR 1, 273279. a83, IJIMCR
Molecular Simulations (2000). Cerius2, Version 4.2 (Computer Software), Accelrys Software Inc., Cambridge, United Kingdom.
Motherwell, W.D. S., Ammon, H.L., Dunitz, J.D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D.W. M., Leusen, F.J. J., Lommerse, J.P. M., Mooij, W.T. M., Price, S.L., Scheraga, H., Schweizer, B., Schmidt, M.U., van Eijck, B.P., Verwer, P., and Williams, D.E. (2002). “Crystal structure prediction of small organic molecules: A second blind test,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 58, 647661. acl, ASBSDK
Panina, N., Leusen, F.J. J., Janssen, F.F. B. J., Verwer, P., Meekes, H., Vlieg, E., and Deroover, G. (2007). “Crystal structure prediction of organic pigments: Quinacridone as an example,” J. Appl. Crystallogr.JACGAR 40, 105114. acr, JACGAR
Pauling, L. (1929). “The principles determining the structure of complex ionic crystals,” J. Am. Chem. Soc.JACSAT 51, 10101026. acs, JACSAT
Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D. (1992). “Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients,” Rev. Mod. Phys.RMPHAT 64, 10451097. rmp, RMPHAT
Rietveld, H.M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571. acr, JACGAR
Schmidt, M.U., Ermrich, M., and Dinnebier, R.E. (2005). “Determination of the structure of the violet pigment C22H12Cl2N6O4 from a non-indexed X-ray powder diagram,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 61, 3745. acl, ASBSDK
Schmidt, M.U., Hofmann, D.W. M., Buchsbaum, C., and Metz, H.J. (2006). “Crystal structure of pigment Red 170 and derivatives, as determined by X-ray powder diffraction,” Angew. Chem., Int. Ed.ACIEF5 45, 13131317. aqv, ACIEF5
Schön, J.C. and Jansen, M. (2001a). “Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems – Part I,” Z. Kristallogr.ZEKRDZ 216, 307325. zek, ZEKRDZ
Schön, J.C. and Jansen, M. (2001b). “Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems – Part II,” Z. Kristallogr.ZEKRDZ 216, 361383. zek, ZEKRDZ
Treacy, M.M. J., Rivin, I., Balkovsky, E., Randall, K.H., and Foster, M.D. (2004). “Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs,” Microporous Mesoporous Mater.MIMMFJ 74, 121132. a9k, MIMMFJ
Wevers, M.A. C., Schön, J.C., and Jansen, M. (1998). “Determination of structure candidates of simple crystalline AB2 systems,” J. Solid State Chem.JSSCBI 136, 233246. jss, JSSCBI
Winkler, B., Knorr, K., and Milman, V. (2003). “Prediction of the structure of LaF3 at high pressures,” J. Alloys Compd. JALCEU 349, 111113. jal, JALCEU 0925-8388
Woodley, S.M. (2004). “Prediction of crystal structures using evolutionary algorithms and related techniques,” in Application of Evolutionary Computation in Chemistry, edited by Mingos, D. M. P. and Johnston, R. L. (Springer-Verlag, Berlin), Vol. 110, pp. 95–132.
Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., and Kim, J. (2003). “Reticular synthesis and the design of new materials,” Nature (London)NATUAS 423, 705714. nat, NATUAS
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed