Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T10:37:07.462Z Has data issue: false hasContentIssue false

FWHM optimized polynomial smoothing filters: A practical approach

Published online by Cambridge University Press:  06 March 2012

Robert E. Dinnebier*
Affiliation:
Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
*
a)Electronic mail: r.dinnebier@fkf.mpg.de

Abstract

A modified method for polynomial smoothing and the calculation of derivatives of equally spaced step scan powder diffraction data is presented. The algorithm takes the angular dependence of the full width at half maximum (FWHM) of diffraction peaks into account, is very effective, and easy to code.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmann, R. (1992). Smoothing by Digital Filters and a new Peak Search Routine. -EPDIC-2, Enschede, The Netherlands, July 30–August 1, 1992, Collected Abstracts, P42.Google Scholar
Betty, K. R., and Horlick, G. (1977). “Frequency Response Plots for Savitzky-Golay Filter Functions,” Anal. Chem. ANCHAM 49, 351352. anc, ANCHAM Google Scholar
Bromba, M. U. A., and Ziegler, H. (1979a). “Application hints for Savitzky-Golay digital smoothing filters,” Anal. Chem. ANCHAM 51, 15831586. anc, ANCHAM Google Scholar
Bromba, M. U. A., and Ziegler, H. (1979b). “Efficient computation of polynomial smoothing digital filters,” Anal. Chem. ANCHAM 51, 17601762. anc, ANCHAM CrossRefGoogle Scholar
Bromba, M. U. A., and Ziegler, H. (1981). “Applications Hints for Savitzky-Golay Smoothing Filters,” Anal. Chem. ANCHAM 53, 15831586. anc, ANCHAM Google Scholar
Bromba, M. U. A., and Ziegler, H. (1983a). “Digital smoothing of noisy spectra,” Anal. Chem. ANCHAM 55, 648653. anc, ANCHAM CrossRefGoogle Scholar
Bromba, M. U. A., and Ziegler, H. (1983b). “Digital filter for computationally efficient smoothing of noisy spectra,” Anal. Chem. ANCHAM 55, 12991302. anc, ANCHAM CrossRefGoogle Scholar
Burian, A., Lecante, P., Mosset, A., and Galy, J. (1985). “Absorption corrections and digital filtering of X-ray diffraction profiles recorded with a position-sensitive detector,” J. Appl. Crystallogr. JACGAR 18, 487492. acr, JACGAR CrossRefGoogle Scholar
Cagliotti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. NUINAO 3, 223228. nun, NUINAO CrossRefGoogle Scholar
Cameron, D. G., and Armstrong, E. E. (1988). “Optimization of stepsize in X-ray powder diffractogram collection,” Powder Diffr. PODIE2 3, 3238. pdj, PODIE2 CrossRefGoogle Scholar
Cernansky, M. (1983). “Some practical aspects of the fourier deconvolution,” J. Appl. Crystallogr., JACGAR 16, 103112 (Comparison of different digital smoothing filters). acr, JACGAR Google Scholar
Covington, M.(1986). “Smooth curves,” PC TECH JOURNAL 4, 110–120.Google Scholar
Denoyer, L. K., and Dodd, J. G. (1990). “Maximum likelihood smoothing of noisy data,” International Laboratory, 16–23.Google Scholar
Dinnebier, R. E. (1989). GUFI, Messung und Auswertung von Guinierfilmen. Diplome thesis, Min.-Petr. Inst., Universita¨t Heidelberg.Google Scholar
Dinnebier, R. E. (1993). GUFI, ein Programmsystem zur Messung und Auswertung von Roentgen-Beugungsaufnahmen an Pulvern. Dissertation, Min.-Petr. Inst., University of Heidelberg, Heidelberger Geowiss. Abh., 68, ISBN 3-89257-067-1, XXII+332 pages.Google Scholar
Dinnebier, R. E., and Finger, L. (1998). Z. Kristallogr. ZEKRDZ 15, 148 zek, ZEKRDZ ; available at (The program GUFI is available for download at http://www.mpi-stuttgart.mpg.de/xray/.)Google Scholar
Enke, C. G., and Nieman, T. A. (1976). “Signal-to-Noise Ratio. Enhancement by Least-Squares Polynomial Smoothing,” Anal. Chem. ANCHAM 48 (8), 15. anc, ANCHAM CrossRefGoogle Scholar
Hamming, R. W. (1983). Digitale Filter, 2nd ed., (VCH Verlagsgesellschaft, Weinheim) ISBN 3-527-26463-9.Google Scholar
Hayden, H.(1987). “Data smoothing routine,” Comput. Phys. 74–75 (Nov/Dec).Google Scholar
Hecq, M. (1981). “A fitting method for X-ray diffraction profiles,” J. Appl. Crystallogr. JACGAR 14, 6061. acr, JACGAR Google Scholar
Hildebrand, F. B. (1956). Introduction to Numerical Analysis (McGraw-Hill, New York), Chap. 7.Google Scholar
Huang, T. C. (1988). “Precision peak determination in X-ray powder diffraction,” Aust. J. Phys. AUJPAS 41, 201212. auj, AUJPAS CrossRefGoogle Scholar
Huang, T. C., and Parrish, W. (1983). “A combined derivative method for peak search analysis,” IBM Research Report (Physics) RJ 4012.Google Scholar
Huang, T. C., Parrish, W., and Lim, G. (1983). “Experimental study of precise peak determination,” IBM Research Report (Physics) RJ 4011.Google Scholar
Kern, A. (1992). “Pra¨zisionspulverdiffraktometrie: Ein Vergleich verschiedener Methoden,” Diplomarbeit, Min.-Petr. Inst., Universita¨t Heidelberg, Heidelberger Geowiss. Abh., 58, ISBN 3-89257-057-4, 175 pages.Google Scholar
Madden, H. H. (1978). “Comments on the Savitzky-Golay convolution method for least squares fit smoothing and differentiation of digital data,” Anal. Chem. ANCHAM 50, 13831386(I). anc, ANCHAM CrossRefGoogle Scholar
Müller, J. J., and Damaschun, G. (1979). “Comparison and optimization of smoothing procedures for small-angle X-ray scattering curves. Polynomial fitting and modified frequency filtering,” J. Appl. Crystallogr. JACGAR 12, 2672774. acr, JACGAR CrossRefGoogle Scholar
Parrish, W. (1983). “Fundamentals of X-ray Powder Diffractometry: Prerequisites for Successful Computer Automation,” American Crystallographic Association, 32nd Annual Denver X-Ray Conference Combined Meeting, August 1–5, 1983, Snowmass, Colorado.Google Scholar
Pireaux, J. J. (1976). “Smoothing and resolution enhancement of photoelectron spectra with the aid of a programmable desk calculator,” Appl. Spectrosc. APSPA4 30, 219224. aps, APSPA4 CrossRefGoogle Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1986). Numerical Recipes, The Art of Scientific Computing (Cambridge University Press, Cambridge).Google Scholar
Proctor, A., and Sherwood, P. M. A. (1980). “Smoothing of digital X-ray photoelectron spectra by an extended sliding least-squares approach,” Anal. Chem. ANCHAM 52, 23152321. anc, ANCHAM Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571. acr, JACGAR CrossRefGoogle Scholar
Savitzky, A., and Golay, M. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. ANCHAM 36, 16271639. anc, ANCHAM Google Scholar
Steinier, J., Termonia, Y., and Deltour, J. (1972). “Comments on smoothing and differentiation of data by simplified least squares procedure,” Anal. Chem., ANCHAM 44, 19061909. anc, ANCHAM Google Scholar
Taylor, C. D., and Nicolas, D. P.(1989). “An adaptive data-smoothing routine,” Comput. Phys. 63–64 (March/April).Google Scholar
Taylor, J. C. (1985). “Technique and performance of powder diffraction in crystal structure studies,” Aust. J. Phys. AUJPAS 38, 519538. auj, AUJPAS CrossRefGoogle Scholar
Visser, J. W., and Sonneveld, E. J. (1975). “Automatic collection of powder data from photographs,” J. Appl. Crystallogr. JACGAR 8, 17. acr, JACGAR Google Scholar
Wilson, P. D., and Edwards, T. H. (1976). “Sampling and Smoothing of Spectra,” Appl. Spectrosc. APSPA4 12, 181. aps, APSPA4 Google Scholar