Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T12:18:28.043Z Has data issue: false hasContentIssue false

Ion size effect on chemical bonds of the RBa2Cu2.9Zn0.1Oy system

Published online by Cambridge University Press:  27 July 2018

R. Benredouane*
Affiliation:
Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Département de Chimie, Université Frères Mentouri Constantine, Constantine 25000, Algeria Département de Physique et Chimie, Ecole Normale Supérieure d'Enseignements Techniques (ENSET), Skikda 21000, Algeria
C. Boudaren
Affiliation:
Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Département de Chimie, Université Frères Mentouri Constantine, Constantine 25000, Algeria
*
a)Author to whom correspondence should be addressed. Electronic mail: rabab212002@yahoo.fr

Abstract

Single-phase polycrystalline samples of RBa2Cu2.9Zn0.1Oy (R = Y, Nd, Gd, Er, and Tm) (ZnR123) were synthesized using the standard solid-state reaction method. They were characterized by X-ray powder diffraction (XRD) and scanning electron microscope. XRD shows that all samples consist essentially of a single phase and retain the orthorhombic structure. The structure of the samples was refined by the Rietveld method with the help of the bond valence sum method. The variation of the lattice parameters and some meaningful bond angles and lengths with the ionic radius are discussed. In these compounds, the variations of the buckling angles Cu2–O(2,3)–Cu2 and Cu2–Cu2–O(2,3) are unique: the bond angles Cu2–O3–Cu2 and Cu2–Cu2–O2 increase, whereas the bond angles Cu2–O2–Cu2 and Cu2–Cu2–O3 decrease. The variation of these bond angles brings about a strong curvature of the Cu2O plane. Furthermore, we have found tree fixed triangles formed by the Cu2, O2, and O3 atoms in addition to another fixed triangle O1–Ba–O1 observed for the first time. BVS of Cu2 atom shows a specific and unique variation compared with other compounds.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awana, V. P. S., Malik, S. K., Cardoso, C. A., De Lima, O. F., Cupta, A., Sedky, A., Yelon, W. B., Prasad, R. and Narlikar, A. V. (2000a). “Strong dependence of superconducting transition temperature (Tc) on the rare earth ionic size in REBaSrCu3O7 (RE = Y, Dy, Nd and La) series”, Mod. Phys. Lett. B 12, 361372.Google Scholar
Awana, V. P. S., Malik, S. K., Yelon, W. B., Cardoso, C. A., de Lima, O. F., Anurag, G., Sedky, A., and Narlikar, A. V. (2000b). “Neutron diffraction on Er1−xCaxBa2Cu3-O7−δ (0.0⩽x⩽0.3) system: possible oxygen vacancies in CuO2 planes”, Phys. C 338, 197204.Google Scholar
Balagurov, A. M., Sikolenko, V. V., Simkin, V. G., Parfionov, O. E., and Shilshtein, S. Sh. (1996), “Neutron-diffraction study of YBa2Cu2.7Zn0.3O6+y isotope enriched samples”, Phys. C 259, 173180.Google Scholar
Brown, I. D. (1991). “The influence of internal strain on the charge distribution and superconducting transition temperature in Ba2YCu3Ox”, J. Solid State Chem. 9, 155167.Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database”, Acta Crystallogr. B 41, 244247.Google Scholar
Brown, I. D. and Shannon, R. D. (1973). “Empirical bond-strength-bond-length curves for oxides”, Acta Crystallogr. A29, 266282.Google Scholar
Cava, R. J., Hewat, A. W., Hewat, E. A., Batlogg, B., Marezio, M., Pabe, K. M., Drajewski, J. J., Peck, W. F. Jr., and Rapp, L. W. Jr. (1990). “Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba2YCu3Ox”, Phys. C 165, 419433.Google Scholar
Chen, Z., Zhang, J., Su, Y., Xue, Y., and Cao, S. (2006). “Effect of rare-earth ion size on local electron structure in RBa2Cu3O7−δ (r = Tm, Dy, Gd, Eu, Nd and Y) superconductors: a positron study”, Phys. C 434, 161166.Google Scholar
Ghorbani, S. R., Andersson, M., and Rapp, Ö. (2004). “Neutron diffraction studies of Nd1−xPrxBa2Cu3O7−δ: evidence for hole localization”, Phys. Rev. B 69, 014503014513.Google Scholar
Guillaume, M., Allenspach, P., Henggeler, W., Mesot, J., Roessli, B., Staub, U., Fischer, P., Furrer, A., and Trounov, V. (1994). “A systematic low-temperature neutron diffraction study of the RBa2Cu3Ox (R = yttrium and rare earths; x = 6 and 7) compounds”, J. Phys. Condens. Matter 6, 79637976.Google Scholar
Jamadar, T. A., Roy, A., and Gosh, A. K. (2013). “Suppression of critical temperature and charge localization in underdoped NdBa2Cu3-xZnxO7-y”, Phys. C 492, 5963.Google Scholar
Jin, W., Hao, S., and Zhang, H. (2009). “The fixed triangle chemical bond and its effect in the Y1-xCaxBa2-yLayCu3OZ system from underdoped to overdoped”, New J. Phys. 11, 113036113051.Google Scholar
Jin, W. T., Hao, S. J., Zhang, X. J., Zhao, Y., and Zhang, H. (2010). “Bond angle study of self-compensating Y1−xCaxBa2−xLaxCu3Oz system”, J. Supercond. Nov. Magn. 23, 847850.Google Scholar
Jorgensen, J. D., Veal, B. W., Paulikis, A. P., Nowicki, L. J., Grabtree, G. W., and Kwok, W. K. (1990). “Structural properties of oxygen-deficient YBa2Cu3O7-δ”, Phys. Rev. B41, 18631877.Google Scholar
Kajitani, T., Kusaba, K., Kikuchi, M., Syono, Y., and Hirabayashi, M. (1988). “Crystal structures of YBa2Cu3−δA δO9−γ (a = Ni, Zn and Co)”, Jpn. J. Appl. Phys. 27, L345L357.Google Scholar
Kinoshita, K., Matsuda, A., Shibata, H., Ishii, T., Watanabe, T., and Yamada, T. (1988). “Crystal structure and superconductivity in Ba2Y1-xPrxCu3O7-y”, Jpn. J. Appl. Phys. 27, L1642L1645.Google Scholar
Kramer, Y. M. J., Dennis, K. W., Falzgraf, D., and McCallum, R. W. (1997). “Suppression of superconductivity in the R(Ba1−zRz)2Cu3O7+δ (r = Pr, Nd) system”, Phys. Rev. B 56, 55125517.Google Scholar
Lin, J. G., Huang, C. Y., Xue, Y. Y., Chu, C. W., Cao, X. W., and Ho, J. C. (1995). “Origin of the R-ion effect on Tc in RBa2Cu3O7”, Phys. Rev. B 51, 1290012903.Google Scholar
Liyanawaduge, N. P., Singh, S. K., Kumar, A., Awana, V. P. S., and Kishan, H.(2010). “Superconducting and magnetic properties of Zn-doped YBa2Cu3O7-δ”, J. Supercond. Nov. Magn. 24, 15991605.Google Scholar
Lundqvist, P., Tengroth, C., Rapp, O., Tellgren, R., and Hegedüs, Z. (1996). “Neutron-diffraction studies and interatomic distances in Ca-Pr doped NdBa2Cu3O7−δ”, Phys. C 269, 231241.Google Scholar
Maeda, H., Koizumi, A., Bamba, N., Takayama-Muromachi, E., Izumi, F., Asano, H., Shimizu, K., Moriwaki, H., Kuroda, Y., and Yamazaki, H. (1989). “EXAFS and neutron diffraction studies of local and average structures for YBa2Cu2.8Zn0.2O7−δ”, Phys. C 157, 483490.Google Scholar
Marv, T. A., Kumar, N. R. S., and Varadaraju, U. V. (1993). “Influence of Cu-site substitution on the structure and superconducting properties of the NdBa2Cu3−xM xO7+δ (m = Fe, Co) and NdBa2Cu3−xM xO7+δ (m = Ni, Zn) systems”, Phys. Rev. B 48, 1672716736.Google Scholar
Mazumder, S., Rajagopal, H., Sequeira, A., Singh, J., Rajarajan, A. K., Gupta, L. C., and Vijayaraghavan, R. (1989). “Structural and superconducting behaviour of Mg- and Zn-substituted YBa2Cu3O7−δ”, Phase Transit. 19, 97105.Google Scholar
Pinto, R., Gupta, L. C., Sharma, R., Sequiera, A., and Gnanasekar, K. I. (1997). “Superconductivity in Lu1−xCaxBa2Cu3O6+δ”, Phys. C 289, 280290.Google Scholar
Podlesnyak, A., Kozhevnikov, V., Mirmelstein, A., Allenspach, P., Mesot, J., Staub, U., Furrer, A., Osborn, R., Bennington, S. M., and Taylor, A. D. (1991). “Neutron spectroscopic studies of crystalline electric fields in high-Tc ErBa2Cu3O7 doped with Zn and Ni”, Phys. C 175, 587594.Google Scholar
Ramesh, S. and Hegde, M. S. (1994). “Bond-valence analysis of the charge distribution and internal stresses in the RBa2Cu3O7−δ”, Phys. C 230, 135140.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures”, J. Appl. Crystallogr. 2, 6571.Google Scholar
Rodríguez-carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, P. 127.Google Scholar
Rupp, B., Pörschke, E., Meuffels, P., Fischer, P., and Allenspach, P. (1989). “Neutron-diffraction study of ErBa2Cu3Ox in the composition range 6.1⩽x⩽7.0”, Phys. Rev. B 40, 44724476.Google Scholar
Samoylenkov, S. V., Gorbenko, O. Y, and Kaul, A. R. (1997). “An analysis of charge carriers distribution in RBa2Cu3O7 using the calculation of bond valence sums”, Phys. C 278, 4954.Google Scholar
Tallon, J. L. (1990). “The relationship between bond-valence sums and Tc in cuprate superconductors”, Phys. C 168, 8590.Google Scholar
Tallon, J. L. (1991). “Time-dependent charge transfer and the superconducting phase diagram for YBa2Cu3O7−δ”, Phys. C 176, 547550.Google Scholar
Williams, G. V. M. and Tallon, J. L. (1996). “Ion size effects on 7 and interplanar coupling in RBa2Cu3O7−δ”, Phys. C 258, 4146.Google Scholar
Xiao, G., Cieplak, M. Z., Musser, D., Gavrin, A., Streitz, F. H., Chien, C. L., Rhyne, J. J., and Gotaas, J. A. (1988). “Significance of plane versus chain sites in high-temperature oxide superconductors”, Nature 332, 238240.Google Scholar
Xu, Y., Ata-Allah, S. S., Berger, M. G., and Glück, O. (1996). “Rare-earth ion size effect on resistivity, susceptibility, and superconductivity of RBa2Cu3−xZnxO7−y (r = Yb, Er, Y, Dy, Gd, Eu, Sm, and Nd)”, Phys. Rev. B 53, 1524515253.Google Scholar
Yu, J., Jin, W. T., Zhao, Y., and Zhang, H. (2009). “Stable bonds and unstable bonds in Y(Pr)-123 system”, Phys. C 469, 967969.Google Scholar
Zhang, H., Cheng, L. L., Qin, X. C., and Zhao, Y. (2000). “Combinative energy between two structural blocks and its correlation with superconductivity in Bi and Hg superconducting systems”, Phys. Rev. B 61, 16181622.Google Scholar
Supplementary material: File

Benredouane and Boudaren supplementary material

Benredouane and Boudaren supplementary material 1

Download Benredouane and Boudaren supplementary material(File)
File 313.9 KB