Skip to main content Accessibility help
×
Home

Nanostructured kesterite (Cu2ZnSnS4) for applications in thermoelectric devices

  • E. Isotta (a1) (a2), N. M. Pugno (a1) (a2) (a3) (a4) and P. Scardi (a1)

Abstract

Kesterite (Cu2ZnSnS4, CZTS) powders were produced by reactive high-energy milling, starting from stoichiometric mixtures of the elemental components. CZTS forms fine crystals with a cubic structure, which evolves to the stable tetragonal form after thermal treatment. Tablets were produced by cold pressing of the ball milled powder, and sintered up to 660 °C. Seebeck coefficient, electrical resistivity, and thermal diffusivity were measured on the sintered tablets, pointing out the positive effect of CZTS nanostructure and of the rather large fraction of porosity: thermal conductivity is rather low (from ~0.8 W/(m K) at 20 °C to ~0.42 W/(m K) at 500 °C), while electrical conduction is not seriously hindered (electrical resistivity from ~8500 µΩ m at 40 °C to ~2000 µΩ m at 400 °C). Preliminary results of thermoelectric behavior are promising.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: paolo.scardi@unitn.it

References

Hide All
Azanza Ricardo, C. L., Su, M. S., Müller, M., and Scardi, P. (2013). “Production of Cu2(Zn,Fe)SnS4 powders for thin film solar cell by high energy ball milling,” J. Power Sources 230, 7075.
Azanza Ricardo, C. L., Girardi, F., Cappelletto, E., D'Angelo, R., Ciancio, R., Carlino, E., Ricci, P. C., Malerba, C., Mittiga, A., Di Maggio, R., and Scardi, P. (2015). “Chloride-based route for monodisperse Cu2ZnSnS4 nanoparticles preparation,” J. Renew. Sustain. Energy 7(4), 043150.
Bosson, C. J., Birch, M. T., Halliday, D. P., Knight, K. S., Gibbs, A. S., and Hatton, P. D. (2017). “Cation disorder and phase transitions in the structurally complex solar cell material Cu2ZnSnS4,” J. Mater. Chem. A 5(32), 1667216680.
Broseghini, M., Gelisio, L., D'Incau, M., Azanza Ricardo, C. L., Pugno, N. M., and Scardi, P. (2016). “Modeling of the planetary ball-milling process: the case study of ceramic powders,” J. Eur. Ceram. Soc. 36, 22052212.
Chmielowski, R., Bhattacharya, S., Jacob, S., Péré, D., Jacob, A., Moriya, K., Delatouche, B., Roussel, P., Madsen, G., and Dennler, G. (2017). “Strong reduction of thermal conductivity and enhanced thermoelectric properties in CoSbS(1-x)Sex paracostibite,” Sci. Rep. 7(1), 111.
Cox, J. D., Wagman, D. D., and Medvedev, V. A. (1984). CODATA Key Values for Thermodynamics. (Hlemisphere Publishing Corp., New York), p. 1.
Devi Sharma, S., and Neeleshwar, S. (2018). “Thermoelectric properties of hot pressed CZTS micro spheres synthesized by microwave method,” Mater. Res. Soc. Adv. 3, 13731378.
Guo, B. L., Chen, Y. H., Liu, X. J., Liu, W. C., and Li, A. D. (2014). “Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells,” AIP. Adv. 4(9), 097115.
Kumar, S., Ansari, M. Z., and Khare, N. (2017). “Enhanced thermoelectric power factor of Cu2ZnSnS4 in the presence of Cu(2-x)S and SnS2 secondary phase,” AIP Conf. Proc. 1832, 14.
Kumar, S., Ansari, M. Z., and Khare, N. (2018). “Influence of compactness and formation of metallic secondary phase on the thermoelectric properties of Cu2ZnSnS4 thin films,” Thin Solid Films 645, 300304.
Liu, M. L., Huang, F. Q., Chen, L. D., and Chen, I. W. (2009). “A wide band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4(Q=S,Se),” Appl. Phys. Lett. 94(20), 202103.
Liu, F. S., Zheng, J. X., Huang, M. J., He, L. P., Ao, W. Q., Pan, F., and Li, J. Q. (2015). “Enhanced thermoelectric performance of Cu2CdSnSe4 by Mn doping: experimental and first principles studies,” Sci. Rep. 4(1), 5774.
Oersted, H. C. (1823). “Nouvelles expériences de M. Seebeck sur les actions électro-magnetiques [New experiments by Mr. Seebeck on electro-magnetic actions],” Annales de chimie. 2nd series (in French) 22, 199201.
Peltier, J. C. H. (1834). “Nouvelles expériences sur la caloricité des courants électrique [New experiments on the heat effects of electric currents],” Annales de Chimie et de Physique (in French) 56, 371386.
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M. S., Chen, G., and Ren, Z. (2008). “High-Thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science 320(5876), 634638.
Rowe, D. M. (2012). Thermoelectrics and its Energy Harvesting (CRC Press, Boca Raton, FL).
Scardi, P. (2008). “Microstructural properties: lattice defects and domain size effects”, Chap. 13 in Powder Diffraction: Theory and Practice (The Royal Society of Chemistry, Cambridge), pp. 376413.
Scardi, P., and Leoni, M. (2002). “Whole powder pattern modelling,” Acta Cryst. A: Foundations Crystallogr. 58(2), 190200.
Scardi, P., Azanza Ricardo, C. L., Perez Demydenko, C., and Coelho, A. A. (2018). “WPPM macros for TOPAS,” J. Appl. Crystallogr. 51, 114.
Schorr, S. (2011). “The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study,” Sol. Energy Mater. Sol. Cells 95(6), 14821488.
Schorr, S., and Gonzalez-Aviles, G. (2009). “In-situ investigation of the structural phase transition in kesterite,” Phys. Status Solidi (A) Appl. Mater. Sci. 206(5), 10541058.
Seebeck, T. J. (1826). “Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz [Magnetic polarization of metals and ores by temperature differences],” Abhandlungen der Koniglichen Akademie der Wissenschaften zu Berlin (in German) 82, 265373.
Skelton, J. M., Jackson, A. J., Dimitrievska, M., Wallace, S. K., and Walsh, A. (2015). “Vibrational spectra and lattice thermal conductivity of kesterite-structured Cu2ZnSnS4 and Cu2ZnSnSe4,” APL Mater. 041102(3), 16.
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B. (2001). “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597602.
Xie, W., Tang, X., Yan, Y., Zhang, Q., and Tritt, T. M. (2009). “High thermoelectric performance of BiSbTe alloy with unique low-dimensional structure,” J. Appl. Phys. 105(11), 113713.
Yang, H., Jauregui, L. A., Zhang, G., Chen, Y. P., and Wu, Y. (2012). “Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting,” Nano Lett. 12(2), 540545.
Zeier, W. G. (2017). “New tricks for optimizing thermoelectric materials,” Curr. Opin. Green Sustain Chem. 4, 2328.
Zhao, X. B., Yang, S. H., Cao, Y. Q., Mi, J. L., Zhang, Q., and Zhu, T. J. (2009). “Synthesis of nanocomposites with improved thermoelectric properties,” J. Electron. Mater. 38(7), 10171024.
Zhou, W., Shijimaya, C., Takahashi, M., Miyata, M., Mott, D., Koyano, M., Ohta, M., Akatsuka, T., Ono, H., and Maenosono, S. (2017). “Sustainable thermoelectric materials fabricated by using Cu2Sn(1-x)ZnxS3 nanoparticles as building blocks,” Appl. Phys. Lett. 111(26), 263105:15.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed