Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T16:37:18.363Z Has data issue: false hasContentIssue false

Order and disorder in NMC layered materials: a FAULTS simulation analysis

Published online by Cambridge University Press:  06 February 2017

Marine Reynaud
Affiliation:
CIC Energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510 Miñano, Spain
Montse Casas-Cabanas*
Affiliation:
CIC Energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510 Miñano, Spain
*
a)Author to whom correspondence should be addressed. Electronic mail: mcasas@cicenergigune.com

Abstract

The program FAULTS has been used to simulate the X-ray powder diffraction (XRD), neutron powder diffraction (NPD), and electron diffraction (ED) patterns of several structural models for LiNi1/3Mn1/3Co1/3O2, including different types of ordering of the transition metal (TM) cations in the TM slabs, different amounts of Li+/NiII+ cation mixing and different amounts of stacking faults. The results demonstrate the relevance of the structural information provided by NPD and ED data as compared with XRD to characterize the microstructure of NMC (LiNi1−y-zMnyCozO2) compounds.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramoff, M. D., Magalhaes, P. J., and Ram, S. J. (2004). “Image processing with imageJ,” Biophotonics Int. 11, 3642.Google Scholar
Cahill, L. S., Yin, S.-C., Samoson, A., Heinmaa, I., Nazar, L. F., and Goward, G. R. (2005). “ 6Li NMR studies of cation disorder and transition metal ordering in Li[Ni1/3Mn1/3Co1/3]O2 using ultrafast magic angle spinning,” Chem. Mater. 17, 65606566.CrossRefGoogle Scholar
Casas-Cabanas, M., Rodríguez-Carvajal, J., and Palacín, M. R. (2006). “FAULTS, a new program for refinement of powder diffraction patterns from layered structures,” Z. Kristallogr. Suppl. 23, 243248.Google Scholar
Casas-Cabanas, M., Reynaud, M., Rikarte-Ormazabal, J., Horbach, P., and Rodríguez-Carvajal, J. (2015). FAULTS. http://www.cicenergigune.com/faults and http://www.ill.eu/sites/fullprof Google Scholar
Casas-Cabanas, M., Reynaud, M., Rikarte-Ormazabal, J., Horbach, P., and Rodríguez-Carvajal, J. (2016). “FAULTS: a program for refinement of structures with extended defects,” J. Appl. Crystallogr. 49, 22592269.Google Scholar
Delmas, C., Fouassier, C., and Hagenmuller, P. (1980). “Structural classification and properties of the layered oxides,” Physica B+C 99, 8185.CrossRefGoogle Scholar
Guilmard, M., Pouillerie, C., Croguennec, L., and Delmas, C. (2003). “Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2 ,” Solid State Ion. 160, 3950.Google Scholar
Hwang, B. J., Tsai, Y. W., Carlier, D., and Ceder, G. (2003). “A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2 ,” Chem. Mater. 15, 36763682.Google Scholar
Kim, J.-M. and Chung, H.-T. (2004). “The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V,” Electrochimica Acta. 49, 937944.Google Scholar
Koyama, Y., Tanaka, I., Adachi, H., Makimura, Y., and Ohzuku, T. (2003). “Crystal and electronic structures of superstructural Li1−x [Co1/3Ni1/3Mn1/3]O2 (0≤x≤1),” J. Power Sources. 119–121, 644648.Google Scholar
Lu, Z., MacNeil, D. D., and Dahn, J. R. (2001). “Layered Li[Ni x Co1−2x Mn x ]O2 cathode materials for lithium-ion batteries,” Electrochem. Solid-State Lett. 4, A200A203.CrossRefGoogle Scholar
Madhavi, S., Subba Rao, G. V., Chowdari, B. V. R., and Li, S. F. Y. (2001). “Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2 ,” J. Power Sources 93, 156162.Google Scholar
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.CrossRefGoogle Scholar
Nagaura, T. and Tozawa, K. (1990). “Lithium ion rechargeable battery,” Progr. Batter. Sol. Cells 9, 209.Google Scholar
Ohzuku, T. and Makimura, Y. (2001). “Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries,” Chem. Lett. 30, 642643.Google Scholar
Rasband, W. (1997). ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij/.Google Scholar
Rodríguez-Carvajal, J. (1993a). FullProf Suite. http://www.ill.eu/sites/fullprof.Google Scholar
Rodríguez-Carvajal, J. (1993b). “Recent advances in magnetic structure determination by neutron powder diffraction,” Phys. B, Condens. Matter 192, 5569.Google Scholar
Rodríguez-Carvajal, J. and Chapon, L. (2004). FullProf Studio. http://www.ill.eu/sites/fullprof.Google Scholar
Rodríguez-Carvajal, J. and Gonzalez-Platas, J. (2003a). CrysFML repository, a Crystallographic Fortran 90 Modules Library. http://forge.epn-campus.eu/projects/crysfml/repository/.Google Scholar
Rodríguez-Carvajal, J. and Gonzalez-Platas, J. (2003b). “Crystallographic Fortran 90 modules library (CrysFML): a simple toolbox for crystallographic computing programs,” Newsl. IUCr Comput. Comm. 1, 5058.Google Scholar
Roisnel, T. and Rodríquez-Carvajal, J. (2001). “WinPLOTR: a windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum 378–381, 118123.Google Scholar
Rozier, P. and Tarascon, J. M. (2015). “Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges,” J. Electrochem. Soc. 162, A2490A2499.Google Scholar
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9, 671675.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A. 32, 751767.Google Scholar
Shinova, E., Stoyanova, R., Zhecheva, E., Ortiz, G. F., Lavela, P., and Tirado, J. L. (2008). “Cationic distribution and electrochemical performance of LiCo1/3Ni1/3Mn1/3O2 electrodes for lithium-ion batteries,” Solid State Ion. 179, 21982208.Google Scholar
Tarascon, J.-M. and Armand, M. (2001). “Issues and challenges facing rechargeable lithium batteries,” Nature 414, 359367.Google Scholar
Treacy, M. M. J., Newsam, J. M., and Deem, M. W. (1991a). “A general recursion method for calculating diffracted intensities from crystals containing planar faults,” Proc. R. Soc. Lond. A. 433, 499520.Google Scholar
Treacy, M. M. J., Newsam, J. M., and Deem, M. W. (1991b). DIFFaX. http://www.public.asu.edu/~mtreacy/DIFFaX.html.Google Scholar
Tsai, Y. W., Hwang, B. J., Ceder, G., Sheu, H. S., Liu, D. G., and Lee, J. F. (2005). “In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling,” Chem. Mater. 17, 31913199.Google Scholar
Weaving, J. S., Coowar, F., Teagle, D. A., Cullen, J., Dass, V., Bindin, P., Green, R., and Macklin, W. J. (2001). “Development of high energy density Li-ion batteries based on LiNi1−x-y Co x Al y O2 ,” J. Power Sources 97–98, 733735.Google Scholar
Whitfield, P. S., Davidson, I. J., Cranswick, L. M. D., Swainson, I. P., and Stephens, P. W. (2005). “Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3Ni1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction,” Solid State Ion 176, 463471.Google Scholar
Yabuuchi, N. and Ohzuku, T. (2003). “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries,” J. Power Sources 119–121, 171174.CrossRefGoogle Scholar
Yabuuchi, N., Koyama, Y., Nakayama, N., and Ohzuku, T. (2005). “Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. II. Preparation and characterization,” J. Electrochem. Soc. 152, A1434A1440.Google Scholar
Yin, S.-C., Rho, Y.-H., Swainson, I., and Nazar, L. F. (2006). “X-ray/neutron diffraction and electrochemical studies of lithium De/re-intercalation in Li1−x Co1/3Ni1/3Mn1/3O2 (x = 0 → 1),” Chem. Mater. 18, 19011910.Google Scholar
Zeng, D., Cabana, J., Bréger, J., Yoon, W.-S., and Grey, C. P. (2007). “Cation ordering in Li[Ni x Mn x Co(1–2x)]O2-layered cathode materials: a nuclear magnetic resonance (NMR), pair distribution function, X-ray absorption spectroscopy, and electrochemical study,” Chem. Mater. 19, 62776289.Google Scholar