Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-09T17:07:18.359Z Has data issue: false hasContentIssue false

Powder diffraction investigations of 2,2-Thiobis(4-methyl-6-tert-butylphenol) and 2,2-Methylenebis(4-methyl-6-tert-butylphenol)

Published online by Cambridge University Press:  01 March 2012

B. Lasocha
Affiliation:
Jagiellonian University, Medical College, Faculty of Medicine, Św. Anny 12, 31-008 Krakow, Poland
M. Grzywa
Affiliation:
Faculty of Chemistry Jagiellonian University, Ingardena 3. 30-060 Kraków, Poland
W. Lasocha*
Affiliation:
Faculty of Chemistry Jagiellonian University, Ingardena 3. 30-060 Kraków, Poland
*
a)Author to whom correspondence should be addressed. Electronic mail: lasocha@chemia.uj.edu.pl

Abstract

X-ray diffraction investigations of two phenol derivatives - 2,2-Thiobis(4-methyl-6-tert-butylphenol) and 2,2-Methylenebis(4-methyl-6-tert-butylphenol) were carried out. Both compounds at room temperature have similar cell volume and the same number of molecules in an unit cell. However, 2,2-Thiobis(4-methyl-6-tert-butylphenol) crystallizes in the monoclinic system with unit cell parameters refined to a=0.8278(2) nm, b=1.2968(4) nm, c=1.9493(7) nm, β=90.93(2)°, space group P21n(14), whereas 2,2-Methylenebis(4-methyl-6-tert-butylphenol) crystallizes in the orthorhombic system with unit cell parameters refined to a=1.6203(5) nm, b=1.2827(5) nm, c=1.0197(3) nm, space group Pna21(33). The investigated C22H30O2S turned out to be a new polymorph of 2,2-Thiobis(4-methyl-6-tert-butylphenol).

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appelman, D. E., Evans, H. T., and Handwerker, D. S. (1966). “Program X-ray, geological survey.”Google Scholar
Chetkina, L. A., Zavodnik, V. E., Bel’skii, V. K., Arzamanova, I. G., Naiman, M. I., and Gurvich, Ya. A. (1984a). “Structure of phenol-stabilizers of polymers. II. Crystal structure of 2,2-Methylenebis(4-methyl-6-tert-butylphenol),” J. Struct. Chem. JSTCAM 25, 109113.Google Scholar
Chetkina, L. A., Zavodnik, V. E., Bel’skii, V. K., Arzamanova, I. G., Naiman, M. I., and Gurvich, Ya. A. (1984b). “Structure of phenol-stabilizers of polymers. III. Crystal structure of 2,2-Thiobis(4-methyl-6-tert-butylphenol),” J. Struct. Chem. JSTCAM 25, 114116.Google Scholar
deWolf, P. M. (1972). “A definition of the indexing figure of merit M 20,” J. Appl. Crystallogr. JACGAR 10.1107/S002188987200932X. 5, 243.CrossRefGoogle Scholar
Hardy, A. D. U. and MacNicol, D. D. (1976). “Crystal and molecular structure of an OH…π hydrogen bonded system: 2.2-bis-(2-hydroxy-5 methyl-3-t-butylphenyl) propane,” JCS Perkin. 2, 11401142.CrossRefGoogle Scholar
Lasocha, W. and Lewinski, K. (1994). “PROSZKI - A system of programs for powder diffraction data analysis,” J. Appl. Crystallogr. JACGAR . 27, 437438.CrossRefGoogle Scholar
PDF-2 - PCPDFWIN, version 1.20 September 1996, International Center for Diffraction Data, Newton Square, PA.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065.CrossRefGoogle Scholar
Sonneveld, E. and Visser, J. W. (1975). “Automatic collection of powder data From photographs,” J. Appl. Crystallogr. JACGAR 8, 1–7.CrossRefGoogle Scholar
Visser, J. W. (1969). “A fully automatic program for finding the unit cell from powder data,” J. Appl. Crystallogr. JACGAR 2, 8995.CrossRefGoogle Scholar
Werner, P. E. and Eriksson, L. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367370.CrossRefGoogle Scholar