Skip to main content
×
×
Home

A rapid method for quantifying single mineral phases in heterogeneous natural dusts using X-ray diffraction

  • Jennifer S. Le Blond (a1), Gordon Cressey (a2), Claire J. Horwell (a3) and Ben J. Williamson (a4)
Abstract

Quantification of potentially toxic single mineral phases in natural dusts of heterogeneous composition is critical for health hazard assessment. For example, crystalline silica, a human carcinogen, can be present as respirable particles in volcanic ash such as quartz, cristobalite, or tridymite. A method to rapidly identify the proportions of crystalline silica within mixed dust samples, such as volcanic ash, is therefore required for hazard managers to assess the potential risk of crystalline silica exposure to local populations. Here we present a rapid method for quantifying the proportions of single phases in the mineral assemblage of mixed dusts using X-ray diffraction (XRD) with a fixed curved position-sensitive detector. The method is a modified version of the whole-pattern peak-stripping (PS) method (devised by Cressey and Schofield [Powder Diffr.11, 35–39 (1996)]) using an internal attenuation standard (IAS) but, unlike the PS method, it requires no knowledge of other phases present in the sample. Ten synthetic sample mixtures were prepared from known combinations of four pure phases (cristobalite, hematite, labradorite, and obsidian), chosen to represent problematic constituents of volcanic ash, and analyzed by XRD. Results of the IAS method were directly compared with those of the PS method. The proportions of cristobalite estimated using the methods were comparable and accurate to within 3 wt %. The new IAS method involved less sample preparation and processing and, therefore, was faster than the original PS method. It therefore offers a highly accurate rapid technique for determination of the proportions of individual phases in mixed dusts.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A rapid method for quantifying single mineral phases in heterogeneous natural dusts using X-ray diffraction
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A rapid method for quantifying single mineral phases in heterogeneous natural dusts using X-ray diffraction
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A rapid method for quantifying single mineral phases in heterogeneous natural dusts using X-ray diffraction
      Available formats
      ×
Copyright
Corresponding author
a)Author to whom correspondence should be addressed. Present address: Department of Geography, University of Cambridge, Downing Site, Cambridge CB2 3EN, UK. Electronic mail: jl490@cam.ac.uk
References
Hide All
Batchelder, M. and Cressey, G. (1998). “Rapid, accurate quantification of clay bearing samples by X-ray diffraction whole pattern stripping,” Clays Clay Miner. 46, 183194.
Beckett, W. S. (2000). “Occupational Respiratory Diseases,” N. Engl. J. Med.NEJMAG 342, 406413.
Cressey, G. (1999). “Recording X-ray snapshots of reaction kinetics: Clay hydration and cation exchange,” Microsource Application Note No. 8 (www.microsource.co.uk).
Cressey, G. and Schofield, P. F. (1996). “Rapid whole-pattern profile-stripping method for the quantification of multiphase samples,” Powder Diffr. 11, 3539.
Deer, W. A., Howie, R. A., and Zussman, J. (1992). An Introduction to the Rock Forming Minerals (Prentice Hall, New York), p. 696.
Hill, R. J. and Howard, C. J. (1987). “Quantitative phase analysis form neutron powder diffraction data using Rietveld method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889887086199 20, 467474.
Horwell, C. J., Sparks, R. S. J., Brewer, T. S., Llewellin, E. W., and Williamson, B. J. (2003). “Characterization of respirable volcanic ash from the Soufrière Hills volcano, Montserrat, with implications for human health hazards,” Bull. Volcanol. (Heidelberg) 65, 346362.
Ibers, J. A. and Hamilton, W. C. (1974). International Tables for X-Ray Crystallography, Revised and Supplementary Tables to Volumes II and III (Kynoch, Birmingham), Vol. IV, pp. 12 and 366.
International Agency for Research on Cancer (IARC) (1997). Silica, Some Silicates, Coal Dust and Para-aramid Fibrils: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (IARC, Lyon, France), Vol. 68, p. 506.
Madsen, I. C. (1999). “Quantitative phase analysis round robin,” IUCR Newsl. 22, 3–5.
Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D., and Lwin, T. (2001). “Outcomes of the International Union of Crystallography commission on powder diffraction round robin on quantitative phase analysis: Samples 1a–1h,” J. Appl. Crystallogr.JACGAR10.1107/S0021889801007476 34, 409426.
Murphy, M. D., Sparks, R. S. J., Barclay, J., Carroll, M. R., and Brewer, T. S. (2000). “Remobilization of andesite magma by intrusion of mafic magma at the Soufrière Hills volcano, Montserrat, West Indies,” J. Petrol.JPTGAD 41, 2142.
Rodgers, K. A. and Cressey, G. (2001). “The occurrence, detection and significance of moganite (SiO2) among some silica sinters,” Miner. Mag.MNLMBB 65, 157167.
Schofield, P. F., Knight, K. S., Covey-Crump, S. J., Cressey, G., and Stretton, I. C. (2002). “Accurate quantification of the modal mineralogy of rocks when image analysis is difficult,” Miner. Mag.MNLMBB 66, 189200.
Sparks, R. S. J., Murphy, M. D., Lejeune, A. M., Watts, R. B., Barclay, J., and Young, S. R. (2000). “Control on the emplacement of the andesite lava dome of the Soufrière hills volcano, Montserrat by degassing-induced crystallization,” Terra Nova 12, 1420.
Talvitie, N. H. (1964). “Determination of free silica: Gravimetric and spectrophotometric procedures applicable to airborne and settled dust,” Am. Ind. Hyg. Assoc. J. 25, 169178.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords