Skip to main content
×
Home
    • Aa
    • Aa

Rietveld refinement for indium nitride in the 105–295 K range

  • W. Paszkowicz (a1), R. Černý (a2) and S. Krukowski (a3)
Abstract

Results of Rietveld refinement for indium nitride data collected in the temperature range 105–295 K are presented. Acicular microcrystals of indium nitride prepared by reaction of liquid indium with nitrogen plasma were studied by X-ray diffraction. The diffraction measurements were carried out at the Swiss-Norwegian Beamline SNBL (ESRF) using a MAR345 image-plate detector. Excellent counting statistics allowed for refinement of the lattice parameters of InN as well as those of the metallic indium secondary phase. In the studied temperature range, the InN lattice parameters show a smooth increase that can be approximated by a linear function. Lattice-parameter dependencies confirm the trends indicated earlier by data measured using a conventional equipment. The relative change of both the a and c lattice parameters with increasing the temperature in the studied range is about 0.05%. The axial ratio slightly decreases with rising temperature. The experimental value of the free structural parameter, u=0.3769(14), is reported for InN for the first time. Its temperature variation is found to be considerably smaller than the experimental error. The thermal-expansion coefficients (TECs), derived from the linearly approximated lattice-parameter dependencies, are αa=3.09(14)×10−6 K−1 and αc=2.79(16)×10−6 K−1. The evaluated TECs are generally consistent with the earlier data. For the present dataset, the accuracy is apparently higher for both, the lattice parameters and thermal-expansion coefficients, than for the earlier results. The refined lattice parameter cIn of the indium secondary phase exhibits the known strongly nonlinear behavior; a shift (ΔT equal about −50 K) of the maximum in cIn(T) dependence is observed with respect to the literature data.

Copyright
Corresponding author
a)Electronic mail: paszk@ifpan.edu.pl
References
Hide All
Angus J. C., Argoitia A., Hayman C. C., Wang L., Dyck J. S., and Kash K. (1997). “Growth of bulk polycrystalline gallium and indium nitride at subatmospheric pressures,” Mater. Res. Soc. Symp. Proc., Vol. 468 (Materials Research Society, Pittsburgh) pp. 149–154.
Bechstedt F., and Füller J. (2002). “Do we know the fundamental energy gap of InN?,” J. Cryst. Growth JCRGAE 246, 315319. jcr, JCRGAE
Besson J. M., Bellaiche L., and Kunc K. (1996). “Second-order pretransitional effects in the high pressure phase transition of indium nitride,” Phys. Status Solidi B PSSBBD 198, 469474. psb, PSSBBD
Bhattacharya P., Sharma T. K., Singh S., Ingale A., and Kukreja L. M. (2002). “Observation of zincblend phase in InN thin films grown on sapphire by nitrogen plasma-assisted pulsed layer deposition,” J. Cryst. Growth JCRGAE 236, 59. jcr, JCRGAE
Bockowski M. (2001). “Growth and doping of GaN and AlN single crystals under high nitrogen pressure,” Cryst. Res. Technol. CRTEDF 36, 771787. crt, CRTEDF
Chichibu S. F., Wada K., Mullhauser J., Brandt O., Ploog K. H., Mizutani T., Setoguchi A., Nakai R., Sugiyama M., Nakanishi H., Korii K., Deguchi T., Sota T., and Nakamura S. (2000). “Evidence of localization effects in InGaN single-quantum-well ultraviolet light-emitting diodes,” Appl. Phys. Lett. APPLAB 76, 16711673. apl, APPLAB
Chisholm J. A., Lewis D. W., and Bristowe P. D. (1999). “Classical simulations of the properties of group-III nitrides,” J. Phys.: Condens. Matter JCOMEL 11, L235L239. jcz, JCOMEL
Christensen N. E., and Gorczyca I. (1993). “Calculated structural phase transitions of aluminum nitride under pressure,” Phys. Rev. B PRBMDO 47, 43074314. prb, PRBMDO
Dyck J. S., Kash K., Hayman C. C., Argoitia A., Grossner M. T., Angus J. C., and Zhou W. L. (1999). “Synthesis of bulk polycrystalline indium nitride at subatmospheric pressures,” J. Mater. Res. JMREEE 14, 24112417. jmr, JMREEE
Elwell D., Feigelson R. S., Simkins M. M., and Tiller W. A. (1984). “Crystal growth of GaN by the reaction between gallium and ammonia,” J. Crypt. Growth JCRGAE 66, 4554. jcr, JCRGAE
Flower S. C.and Saunders G. A. (1990). “The elastic behaviour of indium under pressure and with temperature up to the melting point,” Philos. Mag. B PMABDJ 62, 311328. pmb, PMABDJ
Godlewski M., and Goldys E. M. (2001). “Role of localisation effects in GaN and InGaN,” in Smart Optical Structures and Devices, Proc. SPIE PSISDG 4318, 99108. spi, PSISDG
Goryunova N. A. (1965). “Chemistry of Diamond-type Semiconductors” (WNT, Warsaw) (in Polish, translation from Russian edition).
Grzegory I., Jun J., Krukowski S., Perlin P., and Porowski S. (1993a). “InN thermodynamics and crystal growth at high pressure of N2,Jpn. J. Appl. Phys., Suppl. JJPYA5 32-1, 343345. jjs, JJPYA5
Grzegory I., Jun J., Krukowski S., Bockowski M., and Porowski S. (1993b). “Crystal growth of III-N compounds under high nitrogen pressure,” Physica B PHYBE3 185, 99102. phb, PHYBE3
Grzegory I., Krukowski S., Jun J., Bockowski M., Wróblewski M., and Porowski S. (1994). “Stability of indium nitride at N2 pressure up to 20 kbar.AIP Conf. Proc. APCPCS 309, 565568. apc, APCPCS
Hammersley A. P. (1995). “FIT2D V5.18 Reference Manual V1.6,” ESRF Internal Report, EXP/AH/95-01.
Inushima T., Mamutin V. V., Vekshin V. A., Ivanov S. V., Motokawa M., and Ohoya S. (2001). “Physical properties of InN with the band gap energy of 1.1 eV,” J. Cryst. Growth JCRGAE 227–228, 481485. jcr, JCRGAE
Juza R., and Hahn H. (1938). “On the crystal structure of Cu3N, GaN and InN,” Z. Anorg. Allg. Chem. ZAACAB 239, 282 (in German). zaa, ZAACAB
Kim C. C., Je J. H., Ruterana P., Degave F., Nouet G., Yi M. S., Noh D. Y., and Hwu Y. (2002). “Microstructures of GaN islands on a stepped sapphire surface,” J. Appl. Phys. JAPIAU 91, 42334237. jap, JAPIAU
Kim K., Lambrecht W. R. L., and Segall B. (1996). “Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN,” Phys. Rev. B PRBMDO 53, 1631016326. prb, PRBMDO
Krukowski S., Romanowski Z., Grzegory I., and Porowski S. (1998a). “Interaction of N2 molecule with liquid Ga surface-quantum mechanical calculations (DFT),” J. Cryst. Growth JCRGAE 189–190, 159–156. jcr, JCRGAE
Krukowski S., Witek A., Adamczyk J., Jun J., Bockowski M., Grzegory I., Łucznik B., Nowak G., Wróblewski M., Presz A., Gierlotka S., Stelmach S., Pałosz B., Porowski S., and Zinn P. (1998b). “Thermal properties of indium nitride,” J. Phys. Chem. Solids JPCSAW 59, 289295. jpx, JPCSAW
Kubota K., Kobayashi Y., and Fujimoto K. (1989). “Preparation and properties of III-V nitride thin films,” J. Appl. Phys. JAPIAU 66, 2984–2298. jap, JAPIAU
Lee H. C., Lee K. Y., Yong Y. J., Lee J. Y., and Kim G. H. (1995). “Effect of hydrogen addition on the preferred orientation of AlN films prepared by reactive sputtering,” Thin Solid Films THSFAP 271, 5055. tsf, THSFAP
Li X. B., Sun D. Z., Kong M. Y., and Yoon S. F. (1998). “Structural identification of a cubic phase in hexagonal GaN films grown on sapphire by gas-source molecular beam epitaxy,” J. Cryst. Growth JCRGAE 183, 3137. jcr, JCRGAE
Lima A. P., Tabata A., Leite J. R., Kaiser S., Schikora D., Schöttker B., Frey T., As D. J., and Lischka K. (1999). “Growth of cubic InN on InAs(001) by plasma-assisted molecular beam epitaxy,” J. Cryst. Growth JCRGAE 201–202, 396398. jcr, JCRGAE
MacChesney J. B., Bridenbaugh P. M., and O’Connor P. B. (1970). “Thermal stability of indium nitride at elevated temperatures and nitrogen pressures,” Mater. Res. Bull. MRBUAC 5, 783791. mrb, MRBUAC
Mamutin V. V. (1999). “Growth of AIIIN whiskers and plate-shaped crystals by molecular-beam epitaxy with the participation of the liquid phase,” Tech. Phys. Lett. TPLEED 25, 741744. (transl. from: Pisma Zhurn. Tekh. Fiz. 25, 55-63). tpl, TPLEED
Miao W. G., Wu Y., and Zhou H. P. (1997). “Morphologies and growth mechanisms of aluminium nitride whiskers,” J. Mater. Sci. JMTSAS 32, 19691975. jmt, JMTSAS
Monemar B. (1999). “III-V nitrides—important future electronic materials,” J. Mater. Sci.: Mater. Electron. JSMEEV 10, 227254. eev, JSMEEV
Muñoz A., and Kunc K. (1993). “Structure and static properties of indium nitride at low and moderate pressures,” J. Phys.: Condens. Matter JCOMEL 5, 60156022. jcz, JCOMEL
Nakamura S. (1999). “InGaN-based blue light-emitting diodes and laser diodes,” J. Cryst. Growth JCRGAE 201–202, 290295. jcr, JCRGAE
Nakamura S. (2000a). “Role of alloy fluctuations in InGaN-based LEDs and laser diodes,” Mater. Sci. Forum MSFOEP 338–342, 16091614. msf, MSFOEP
Nakamura S. (2000b). “Role of dislocations in InGaN-based LEDs and laser diodes,” Int. J. High Speed Electron. IHSSEF 10, 271279. ihs, IHSSEF
Osamura K., Naka S., and Murakami Y. (1975). “Preparation and optical properties of Ga1−xInxN thin films,” J. Appl. Phys. JAPIAU 46, 34323437. jap, JAPIAU
Parala H., Devi A., Hipler F., Maile E., Birkner A., Becker H. W., and Fischer R. A. (2001). “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth JCRGAE 231, 6874. jcr, JCRGAE
Paszkowicz W. (1999). “X-ray powder diffraction data for indium nitride,” Powder Diffr. PODIE2 14, 258260. pdj, PODIE2
Paszkowicz W., Adamczyk J., Krukowski S., Leszczynski M., Porowski S., Sokolowski J. A., Michalec M., and Lasocha W. (1999). “Lattice parameters, density and thermal expansion of InN microcrystals grown by the reaction of nitrogen plasma with liquid indium,” Philos. Mag. A PMAADG 79, 11451154. pma, PMAADG
Paszkowicz W., and Knapp M. (1999). Unpublished.
Paulus B., Shi F.-J., and Stoll H. (1997). “A correlated ab initio treatment of the zinc-blende wurtzite polytypism of SiC and III-V nitrides,” J. Phys.: Condens. Matter JCOMEL 9, 27452758. jcz, JCOMEL
Pichugin I. G., and Tlachala M. (1978). “X-ray analysis of indium nitride,” Inorg. Mater. INOMAF 14, 135136 (translation from Izv. AN SSSR, Neorg. Mater. 14, 175-176). inm, INOMAF
Podsiadlo S. (1995). “Stages of the synthesis of indium nitride with the use of urea,” Thermochim. Acta THACAS 256, 375380. tha, THACAS
Prywer J., and Krukowski S. (1998). “GaN single crystal habits and their relation to GaN growth under high pressure of nitrogen,” MRS Internet J. Nitride Semicond. Res. MIJNF7 3 (47), 110. mrj, MIJNF7
Rodriguez-Carvajal J. (2001). “Recent developments of the program FULLPROF,” Newslett. IUCr Commission Powder Diffr. PODIE2 26, 1219. pdj, PODIE2
Romanowski Z., Krukowski S., Grzegory I., and Porowski S. (2001). “Surface reaction of nitrogen with liquid group III metals,” J. Chem. Phys. JCPSA6 114, 63536363. jcp, JCPSA6
Sheleg A.U., and Sevastenko, V.A. (1976) “Investigation of thermal expansion of indium and gallium nitrides,” Vestsi Akad. Navuk BSSR, No. 3, 126-128.
Stampfl C., and Van de Walle C.G. (1999) “Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation,” Phys. Rev. B PRBMDO 59, 55215535. prb, PRBMDO
Strite S., Chandrasekhar D., Smith D. J., Sariel J., Chen H., Teraguchi N., and Morkoç H. (1993). “Structural properties of InN films grown on GaAs substrates: observation of the zincblende polytype,” J. Cryst. Growth JCRGAE 127, 204208. jcr, JCRGAE
Tabata A., Lima A. P., Teles L. K., Scolfaro L. M. R., Leite J. R., Lemos V., Schöttker B., Frey T., Schikora D., and Lischka K. (1999). “Structural properties and Raman modes of zinc blende InN epitaxial layers,” Appl. Phys. Lett. APPLAB 74, 362364. apl, APPLAB
Tanaka M., Nakahata S. Sogabe K., Nakata H., and Tobioka M. (1997). “Morphology and X-ray diffraction peak widths of aluminum nitride single crystals prepared by the sublimation method,” Jpn. J. Appl. Phys., Part 2 JAPLD8 36, L1062L1064. jjc, JAPLD8
Tansley T. L. (1994). “Crystal structure, mechanical properties, thermal properties and refractive index of InN,” in Properties of Group III Nitrides, EMIS Datareviews Series, edited by J. H. Edgar (British Institution of Electrical Engineers Publ., London), pp. 35–40.
Tansley T. L., and Foley C. P. (1986). “Optical band gap of indium nitride,” J. Appl. Phys. JAPIAU 59, 32413244. jap, JAPIAU
Ueno M., Yoshida M., Onodera A., Shimomura O., and Takemura K. (1994). “Stability of the wurtzite-type structure under high pressure: GaN and InN,” Phys. Rev. B PRBMDO 49, 1421. prb, PRBMDO
Vaidhyanathan B., Agrawal D. K., and Roy R. (2000). “Novel synthesis of nitride powders by microwave-assisted combustion,” J. Mater. Res. JMREEE 15, 974981. jmr, JMREEE
Wang H. B., Han J. C., Li Z. Q., and Du S. Y. (2001). “Effect of additives on self-propagating high-temperature synthesis of AlN,” J. Eur. Ceram. Soc. JECSER 21, 21932198. jeu, JECSER
Wang K., and Reeber R. R. (2001). “Thermal expansion and elastic properties of InN,” Appl. Phys. Lett. APPLAB 79, 16021604. apl, APPLAB
Wołcyrz M., Kubiak R., and Maciejewski S. (1981). “X-ray investigation of thermal expansion and atomic thermal vibrations of tin, indium, and their alloys,” Phys. Status Solidi B PSSBBD 107, 245253. psb, PSSBBD
Wright A. F., and Nelson J. S. (1995). “Consistent structural properties for AlN, GaN, and InN,” Phys. Rev. B PRBMDO 51, 78667869. prb, PRBMDO
Wu X. H., Kapolnek D., Tarsa E. J., Heying B., Keller S., Keller B. P., Mishra U. K., DenBaars S. P., and Speck J. S. (1996). “Nucleation layer evolution in metal-organic chemical vapor deposition grown GaN,” Appl. Phys. Lett. APPLAB 68, 13711373. apl, APPLAB
Wu J., Walukiewicz W., Yu K. M., Ager J. W., Haller E. E., Lu H., Schaff W. J., Saito Y., and Nanishi Y. (2002). “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. APPLAB 80, 39673969. apl, APPLAB
Yeh C.-Y., Lu Z. W., Froyen S., and Zunger A. (1992). “Zinc-blende-wurtzite polytypism in semiconductors,” Phys. Rev. B PRBMDO 46, 1008610097. prb, PRBMDO
Zhou H. P., Chen H., Liu Y. C., and Wu Y. (2000). “Growth of aluminium nitride whiskers by sublimation-recrystallization method,” J. Mater. Sci. JMTSAS 35, 471475. jmt, JMTSAS
Zoroddu A., Bernardini F., Ruggerone P., and Fiorentini V. (2001). “First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory,” Phys. Rev. B PRBMDO 6404, 045208/1-6. prb, PRBMDO
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 169 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.