Hostname: page-component-6b989bf9dc-6f5p8 Total loading time: 0.001 Render date: 2024-04-15T00:50:46.691Z Has data issue: false hasContentIssue false

Rietveld texture analysis from TOF neutron diffraction data

Published online by Cambridge University Press:  29 February 2012

H.-R. Wenk*
Affiliation:
University of California, Berkeley, California 94720
L. Lutterotti
Affiliation:
University of Trento, Trento, Italy 38123
S. C. Vogel
Affiliation:
Lujan Center, LANSCE, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Author to whom correspondence should be addressed. Electronic mail: wenk@berkeley.edu

Abstract

One of the advantages of a multidetector neutron time-of-flight diffractometer such as the high pressure preferred orientation diffractometer (HIPPO) at the Los Alamos Neutron Science Center is the capability to measure efficiently preferred orientation of bulk materials. A routine experimental method for measurements, both at ambient conditions, as well as high or low temperatures, has been established. However, only recently has the complex data analysis been streamlined to make it straightforward for a noninitiated user. Here, we describe the Rietveld texture analysis of HIPPO data with the computer code Materials Analysis Using Diffraction (MAUD) as a step-by-step procedure and illustrate it with a metamorphic quartz rock. Postprocessing of the results is described and neutron diffraction results are compared with electron backscatter diffraction measurements on the same sample.

Type
Crystallography Education
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artioli, G., Dugnani, M., Hansen, T., Lutterotti, L., Pedrotti, A., and Sperl, G. (2003). “Crystallographic texture analysis of the Iceman and coeval copper axes by non-invasive neutron powder diffraction,” in Die Gletschermumie aus der Kupferzeit 2, edited by Fleckinger, A. (Folio Verlag, Wien, Bozen), pp. 922.Google Scholar
Bhattacharyya, D., Viswanathan, G. B., Vogel, S. C., Williams, D. J., Venkatesh, V., and Fraser, H. L. (2006). “A study of the mechanism of α to β phase transformation by tracking texture evolution with temperature in Ti-6Al-4V using neutron diffraction,” Scr. Mater. SCMAF7 54, 231236.10.1016/j.scriptamat.2005.09.026Google Scholar
Birsan, M., Szpunar, J. A., Tun, Z., and Root, J. H. (1996). “Magnetic texture determination using nonpolarized neutron diffraction,” Phys. Rev. B PLRBAQ 53, 64126417.10.1103/PhysRevB.53.6412Google Scholar
Brockhouse, B. N. (1953). “The initial magnetization of nickel under tension,” Can. J. Phys. CJPHAD 31, 339355.Google Scholar
Brown, D. W., Bourke, M. A. M., Field, R. D., Hults, W. L., Teter, D. F., Thoma, D. J., and Vogel, S. C. (2006). “Neutron diffraction study of the deformation mechanisms of the uranium-7% niobium shape memory alloy,” Mater. Sci. Eng., A MSAPE3 421, 1521.10.1016/j.msea.2005.10.001Google Scholar
Bunge, H. J. (1965). “Zur Darstellung allgemeiner Texturen,” Z. Metallkd. ZEMTAE 56, 872874.Google Scholar
Bunge, H.-J. (1982). Texture Analysis in Materials Science—Mathematical Methods (Butterworths, London).Google Scholar
Bunge, H. J. (1989). “Texture and magnetic properties,” Textures Microstruct. TEMIDK 11, 7591.10.1155/TSM.11.75Google Scholar
Caglioti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. NUINAO 3, 223228.10.1016/0369-643X(58)90029-XGoogle Scholar
Caglioti, G., Paoletti, A., and Ricci, F. P. (1960). “On resolution and luminosity of a neutron diffraction spectrometer for single crystal analysis,” Nucl. Instrum. Methods NUIMAL 9, 195198.10.1016/0029-554X(60)90101-4Google Scholar
Day, P., Enderby, J. E., Williams, W. G., Chapon, L. C., Hannon, A. C., Radaelli, P. G., and Soper, A. K. (2004). “GEM: The general materials diffractometer at ISIS—Multibank capabilities for studying crystalline and disordered materials,” Neutron News NTNEEJ 15, 1923.10.1080/00323910490970564Google Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” J. Appl. Crystallogr. JACGAR 19, 267272.10.1107/S0021889886089458Google Scholar
Downs, R. T. and Wallace-Hall, M. (2003). “The American Mineralogist crystal structure database,” Am. Mineral. AMMIAY 88, 247250.Google Scholar
Grazulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quiros, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A. (2009). “Crystallography open database—An open access collection of crystal structures,” J. Appl. Crystallogr. JACGAR 42, 726729.10.1107/S0021889809016690Google Scholar
Hartig, C., Vogel, S. C., and Mecking, H. (2006). “In-situ measurement of texture and elastic strains with HIPPO-CRATES,” Mater. Sci. Eng., A MSAPE3 437, 145150.10.1016/j.msea.2006.04.070Google Scholar
Hastings, J. M. and Corliss, L. M. (1962). “Magnetic structure of manganese chromite,” Phys. Rev. PHRVAO 126, 556565.10.1103/PhysRev.126.556Google Scholar
Ivankina, T. I., Kern, H., and Nikitin, A. N. (2005). “Directional dependence of P- and S-wave propagation and polarization in foliated rocks from the Kola superdeep well: Evidence from laboratory measurements and calculations based on TOF neutron diffraction,” Tectonophysics TCTOAM 407, 2542.10.1016/j.tecto.2005.05.029Google Scholar
Izumi, F. and Momma, K. (2007). “Three-dimensional visualization in powder diffraction,” Diffus. Defect Data, Pt. B DDBPE8 130, 1520.Google Scholar
Jones, J. L., Hoffman, M., and Vogel, S. C. (2007). “Ferroelastic domain switching in lead zirconate titanate measured by in situ neutron diffraction,” Mechanics of Materials 39, 283290.Google Scholar
Kocks, U. F., Tomé, C. N., and Wenk, H.-R. (2000). Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties, 2nd ed. (Cambridge University Press, Cambridge).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, N.M.Google Scholar
LeBail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. MRBUAC 23, 447452.10.1016/0025-5408(88)90019-0CrossRefGoogle Scholar
Lonardelli, I., Gey, N., Wenk, H.-R., Humbert, M., Vogel, S. C., and Lutterotti, L. (2007). “In situ observation of texture evolution during α-β and β-α phase transformations in titanium alloys investigated by neutron diffraction,” Acta Mater. ACMAFD 55, 57185727.10.1016/j.actamat.2007.06.017CrossRefGoogle Scholar
Lonardelli, I., Wenk, H.-R., Lutterotti, L., and Goodwin, M. (2005). “Texture analysis from synchrotron diffraction images with the Rietveld method: Dinosaur tendon and salmon scale,” J. Synchrotron Radiat. JSYRES 12, 354360.10.1107/S090904950500138XGoogle Scholar
Lutterotti, L. and Bortolotti, M. (2005). “Algorithms for solving crystal structures using texture,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 61, c158c159.10.1107/S0108767305093256Google Scholar
Lutterotti, L., Ceccato, R., Dal Maschio, R., and Pagani, E. (1998). “Quantitative analysis of silicate glass in ceramic materials by the Rietveld method,” Mater. Sci. Forum MSFOEP 278–281, 8792.10.4028/www.scientific.net/MSF.278-281.87Google Scholar
Lutterotti, L., Chateigner, D., Ferrari, S., and Ricote, J. (2004). “Texture, residual stress and structural analysis of thin films using a combined X-ray analysis,” Thin Solid Films THSFAP 450, 3441.10.1016/j.tsf.2003.10.150CrossRefGoogle Scholar
Lutterotti, L., Matthies, S., Wenk, H.-R., Schultz, A. J., and Richardson, J. W. (1997). “Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra,” J. Appl. Phys. JAPIAU 81, 594600.10.1063/1.364220Google Scholar
Lutterotti, L. and Scardi, P. (1992). “Profile fitting by the interference function,” Adv. X-Ray Anal. AXRAAA 35A, 577584.Google Scholar
Lutterotti, L. and Scardi, P. (1990). “Simultaneous structure and size-strain refinement by the Rietveld method,” J. Appl. Crystallogr. JACGAR 23, 246252.Google Scholar
Lutterotti, L., Voltolini, M., Wenk, H.-R., Bandyopadhyay, K., and Vanorio, T. (2010). “Texture analysis of turbostratically disordered Ca-montmorillonite,” Am. Mineral. AMMIAY 95, 98103.10.2138/am.2010.3238Google Scholar
Matthies, S., Lutterotti, L., and Wenk, H.-R. (1997). “Advances in texture analysis from diffraction spectra,” J. Appl. Crystallogr. JACGAR 30, 3142.10.1107/S0021889896006851Google Scholar
Matthies, S., Pehl, J., Wenk, H.-R., and Vogel, S. (2005). “Quantitative texture analysis with the HIPPO TOF diffractometer,” J. Appl. Crystallogr. JACGAR 38, 462475.10.1107/S0021889805006187CrossRefGoogle Scholar
Matthies, S. and Vinel, G. W. (1982). “On the reproduction of the orientation distribution function of textured samples from reduced pole figures using the concept of conditional ghost correction,” Phys. Status Solidi B PSSBBD 112, K111K114.10.1002/pssb.2221120254Google Scholar
Matthies, S. and Wagner, F. (1996). “On a 1/n law in texture related single orientation analysis,” Phys. Status Solidi B PSSBBD 196, K11K15.10.1002/pssb.2221960225CrossRefGoogle Scholar
McDaniel, S., Bennett, K., Durham, W. B., and Waddington, E. D. (2006). “In situ deformation apparatus for time-of-flight neutron diffraction: Texture development of polycrystalline ice Ih,” Rev. Sci. Instrum. RSINAK 77, 093902(1-6).10.1063/1.2349603Google Scholar
Pehl, J. and Wenk, H.-R. (2005). “Evidence for regional Dauphiné twinning in quartz from the Santa Rosa mylonite zone in Southern California. A neutron diffraction study,” J. Struct. Geol. JSGEDY 27, 17411749.10.1016/j.jsg.2005.06.008Google Scholar
Popa, N. C. (1998). “The hkl dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement,” J. Appl. Crystallogr. JACGAR 31, 176180. 10.1107/S0021889897009795CrossRefGoogle Scholar
Popa, N. C. and Balzar, D. (2002). “An analytical approximation for the size-broadened profile given by the lognormal and gamma distributions,” J. Appl. Crystallogr. JACGAR 35, 338346.10.1107/S0021889802004156Google Scholar
Reiche, H. M. and Vogel, S. C. (2010). “A versatile automated sample changer for texture measurements on the HIPPO neutron diffractometer,” Rev. Sci. Instrum. RSINAK 81.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571.10.1107/S0021889869006558Google Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B PHYBE3 192, 5569.10.1016/0921-4526(93)90108-ICrossRefGoogle Scholar
Roe, R. J. (1965). “Description of crystalline orientation in polycrystalline materials III, general solution to pole figure inversion,” J. Appl. Phys. JAPIAU 36, 20242031.Google Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder data from photographs,” J. Appl. Crystallogr. JACGAR 8, 17.10.1107/S0021889875009417CrossRefGoogle Scholar
Toby, B. H. (2006). “R factors in Rietveld analysis: How good is good enough?Powder Diffr. PODIE2 21, 6770.10.1154/1.2179804CrossRefGoogle Scholar
Ullemeyer, K., Spalthoff, P., Heinitz, J., Isakov, N. N., Nikitin, A. N., and Weber, K. (1998). “The SKAT texture diffractometer at the pulsed reactor IBR-2 at Dubna: Experimental layout and first measurements,” Nucl. Instrum. Methods Phys. Res. A NIMAER 412, 8088.10.1016/S0168-9002(98)00340-4Google Scholar
Vogel, S. C., Hartig, C., Lutterotti, L., Von Dreele, R. B., Wenk, H.-R., and Williams, D. J. (2004). “Texture measurements using the new neutron diffractometer HIPPO and their analysis using the Rietveld method,” Powder Diffr. PODIE2 19, 6568.10.1154/1.1649961Google Scholar
Volz, H. M., Vogel, S. C., Necker, C. T., Roberts, J. A., Lawson, A. C., Williams, D. J., Daemen, L. L., Lutterotti, L., and Pehl, J. (2006). “Rietveld texture analysis by neutron diffraction of highly absorbing materials,” Powder Diffr. PODIE2 21, 114117.10.1154/1.2204058CrossRefGoogle Scholar
Von Dreele, R. B. (1997). “Quantitative texture analysis by Rietveld refinement,” J. Appl. Crystallogr. JACGAR 30, 517525.10.1107/S0021889897005918CrossRefGoogle Scholar
Wenk, H.-R. (2006). “Neutron diffraction texture analysis,” Rev. Mineral. Geochem. RMGECB 63, 399426.10.2138/rmg.2006.63.15Google Scholar
Wenk, H.-R. (2011). “Texture analysis by advanced diffraction methods,” in Modern Diffraction Methods, edited by Mittemeyer, E. and Welzel, U. (in press), Chap. 8.Google Scholar
Wenk, H.-R., Barton, N., Bortolotti, M., Vogel, S. C., Voltolini, M., Lloyd, G., and Gonzalez, G. (2009). “Dauphine twinning and texture memory in polycrystalline quartz. Part 3. Texture memory during phase transformations,” Phys. Chem. Minerals 37, 567583.CrossRefGoogle Scholar
Wenk, H.-R., Cont, L., Xie, Y., Lutterotti, L., Ratschbacher, L., and Richardson, J. (2001). “Rietveld texture analysis of Dabie Shan eclogite from TOF neutron diffraction spectra,” J. Appl. Crystallogr. JACGAR 34, 442453.10.1107/S0021889801005635CrossRefGoogle Scholar
Wenk, H.-R., Huensche, I., and Kestens, L. (2007). “In situ observation of texture changes in ultralow carbon steel,” Mater. Trans. MTARCE 30, 261267.Google Scholar
Wenk, H. R. and Kocks, U. F. (1987). “The representation of orientation distributions,” Metall. Trans. A MTTABN 18A, 10831092.Google Scholar
Wenk, H.-R., Lonardelli, I., Rybacki, E., Dresen, G., Barton, N., Franz, H., and Gonzalez, G. (2006). “Dauphiné twinning and texture memory in polycrystalline quartz. Part 1: Experimental deformation of novaculite,” Phys. Chem. Miner. PCMIDU 33, 667676.10.1007/s00269-006-0115-9Google Scholar
Wenk, H.-R., Lutterotti, L., and Vogel, S. (2003). “Texture analysis with the new HIPPO TOF diffractometer,” Nucl. Instrum. Methods Phys. Res. A NIMAER 515, 575588.10.1016/j.nima.2003.05.001Google Scholar
Wenk, H.-R., Matthies, S., Donovan, J., and Chateigner, D. (1998). “BEARTEX, a Windows-based program system for quantitative texture analysis,” J. Appl. Crystallogr. JACGAR 31, 262269.10.1107/S002188989700811XGoogle Scholar
Xie, Y., Wenk, H.-R., Lutterotti, L., and Kovacs, F. (2004). “Texture analysis of ancient coins with TOF neutron diffraction,” J. Mater. Sci. JMTSAS 39, 33293337.10.1023/B:JMSC.0000026933.28906.19Google Scholar
Xie, Y., Wenk, H.-R., and Matthies, S. (2003). “Plagioclase preferred orientation by TOF neutron diffraction and SEM-EBSD,” Tectonophysics TCTOAM 370, 269286.10.1016/S0040-1951(03)00191-4Google Scholar