Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T19:07:36.369Z Has data issue: false hasContentIssue false

Structure determination of two structural analogs, named 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16F2N4S) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16ClFN4S) by synchrotron X-ray powder diffraction

Published online by Cambridge University Press:  19 December 2017

Gülsüm Gündoğdu*
Affiliation:
Faculty of Engineering Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
Sevim Peri Aytaç
Affiliation:
Faculty of Pharmacy Department of Pharmaceutical Chemistry, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
Melanie Müller
Affiliation:
Department of Crystallography, Ruhr University Bochum, Institute for Geology, Mineralogy and Geophysics, D44780 Bochum, Germany
Birsen Tozkoparan
Affiliation:
Faculty of Pharmacy Department of Pharmaceutical Chemistry, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
Filiz Betül Kaynak
Affiliation:
Faculty of Engineering Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*
a)Author to whom correspondence should be addressed. Electronic mail: gulsum.gnd@hacettepe.edu.tr

Abstract

Two novel compounds, 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16F2N4S) (1) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16ClFN4S) (2), have been designed and synthesized as cytotoxic agents. The compounds were characterized by infrared, proton nuclear magnetic resonance, mass spectral data, elemental analysis and X-ray powder diffraction. The present study comprises spectral data and crystal structures of these novel compounds determined from synchrotron X-ray powder diffraction data. The structure solutions were obtained by simulated annealing. The final structures were achieved by Rietveld refinement using soft restraints for all bond lengths, bond angles, and planar groups. Both compounds crystallize in space group $P\bar 1$, Z = 2, with the unit-cell parameters a = 6.37433(9), b = 11.3641(2), c = 14.09115(19) Å, α = 80.1740(8)°, β = 85.1164(8)°, γ = 80.9831(10)°, V = 991.55(3) Å3 of compound (1) and a = 6.53736(6), b = 11.55725(15), c = 14.01373(13) Å, α = 80.3323(7)°, β = 84.8939(6)°, γ = 79.3954(8)°, V = 1024.08(2) Å3 of compound (2). Structural analyses reveal that the title compounds are isostructural.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aytaç, P. S., Durmaz, I., Houston, D. R., Çetin-Atalay, R. and Tozkoparan, B. (2016). “Novel triazolothiadiazines act as potent anticancer agents in liver cancer cells through Akt and ASK-1 proteins”, Bioorg. Med. Chem. 24(4), 858872.Google Scholar
Cansız, A., Cetin, A., Orek, C., Kocatepe, M., Sarac, K., Kus, A. and Koparir, P. (2012). “6-Phenyl-3-(4-pyridyl)-1,2,4-triazolo-[3,4-b][1,3,4]thiadiazole: synthesis, experimental, theoretical characterization and biological activities”, Spectrochim. Acta, Part A 97, 606615.Google Scholar
Cheary, R. W. and Coelho, A. A. (1998a). “Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations”, J. Appl. Crystallogr. 31, 851861.Google Scholar
Cheary, R. W. and Coelho, A. A. (1998b). “Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure”, J. Appl. Crystallogr. 31, 862868.Google Scholar
Coelho, A. A. (2009). TOPAS 4.2: General Profile and Structure Analysis Software for Powder Diffraction Data- User's Manual (Bruker AXS, Karlsruhe, Germany).Google Scholar
Coelho, A. A. (2012). TOPAS Academic Version 5: User Manual. Coelho Software, Brisbane, Australia.Google Scholar
Cooper, R. I., Thomson, A. L. and Watkin, D. J. (2010). “CRYSTALS enhancements: dealing with hydrogen atoms in refinement”, J. Appl. Crystallogr. 43, 11001107.Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data”, J. Appl. Crystallogr. 39, 910915.Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H. (2009). “OLEX2: a complete structure solution, refinement and analysis program”, J. Appl. Crystallogr. 42, 339341.Google Scholar
Fan, Z., Yang, Z., Zhang, H., Wang, N. M. H., Cai, F., Zuo, X., Zheng, Q. and Song, H. (2010). “Synthesis, crystal structure, and biological activity of 4-methyl-1,2,3-thiadiazole- containing 1,2,4-Triazolo[3,4-b][1,3,4]thiadiazoles”, J. Agric. Food Chem. 58, 26302636.Google Scholar
Farrugia, L. J. (2012). “WinGX and ORTEP for windows: an update”, J. Appl. Crystallogr. 45, 849854.Google Scholar
Favre-Nicolin, V. and Cerny, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction”, J. Appl. Crystallogr. 35, 734743.Google Scholar
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. and Hutchison, G. R. (2012). “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform”, J. Cheminform. 4, 17.Google Scholar
Ilango, K. and Valentina, P. (2010). “Facile synthesis and cytotoxic activity of 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazoles”, Eur. J. Chem. 1(1), 5053.Google Scholar
Järvinen, M. (1993). “Application of symmetrized harmonics expansion to correction of the preferred orientation effect”, J. Appl. Crystallogr. 26, 525531.Google Scholar
Khan, M.-u-H., Hameed, S., Tahir, M. N., Bokhari, T. H. and Khan, I. U. (2009). “6-(1-Adamantyl)-3-(2-fluorophenyl)- 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole”, Acta Crystallogr. E65, o1437.Google Scholar
Khan, I., Zaib, S., Ibrar, A., Rama, N. H., Simpson, J. and Iqbal, J. (2014). “Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazines”. Eur. J. Med. Chem. 78, 167177.Google Scholar
Khan, I., Bakht, S. M., Ibrar, A., Abbas, S., Hameed, S., White, J. M., Rana, U. A., Zaib, S., Shahid, M. and Iqbal, J. (2015). “Exploration of a library of triazolothiadiazole and triazolothiadiazine compounds as a highly potent and selective family of cholinesterase and monoamine oxidase inhibitors: design, synthesis, X-ray diffraction analysis and molecular docking studies”, RSC Adv. 5, 2124921267.Google Scholar
Lu, D., Zhang, M., Song, L., Tan, Q. and Shao, M. (2008). “Ethyl 5-[6-(furan-2-yl)-1,2,4-triazolo-[3,4-b][1,3,4]thiadiazol-3-yl]-2,6-dimethylnicotinate”, Acta Crystallogr. E64, o80o81.Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. and van de Streek, J. (2006). “Mercury: visualization and analysis of crystal structures”, J. Appl. Crystallogr. 39, 453457.Google Scholar
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.Google Scholar
Spek, A. L. (1988). “ LEPAGE - an MS-DOS program for the determination of the metrical symmetry of a translation lattice”, J. Appl. Crystallogr. 21, 578579.Google Scholar
Spek, A. L. (2003). “Single-crystal structure validation with the program PLATON”, J. Appl. Crystallogr. 36, 713.CrossRefGoogle Scholar
Thompson, P., Cox, D. E. and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3”, J. Appl. Crystallogr. 20, 7983.Google Scholar
Wu, P. (2013). “Crystal structure of 6-ferrocenyl-3-Phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole”, J. Struct. Chem. 54(5) 983985.Google Scholar
Supplementary material: File

Gündoğdu et al. supplementary material

Gündoğdu et al. supplementary material 1

Download Gündoğdu et al. supplementary material(File)
File 1.2 MB