Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T21:35:45.169Z Has data issue: false hasContentIssue false

Structure elucidation of 3-[1-(6-methoxy-2-naphtyl)ethyl]-6-(2,4-dichlorophenyl)-7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine, C23H18Cl2N4OS from synchrotron X-ray powder diffraction

Published online by Cambridge University Press:  19 December 2017

Gülsüm Gündoğdu*
Affiliation:
Faculty of Engineering Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
Sevim Peri Aytaç
Affiliation:
Faculty of Pharmacy Department of Pharmaceutical Chemistry, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
Melanie Müller
Affiliation:
Department of Crystallography, Ruhr University Bochum, Institute for Geology, Mineralogy and Geophysics, D44780 Bochum, Germany
Birsen Tozkoparan
Affiliation:
Faculty of Pharmacy Department of Pharmaceutical Chemistry, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
Filiz Betül Kaynak
Affiliation:
Faculty of Engineering Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*
a)Author to whom correspondence should be addressed. Electronic mail: gulsum.gnd@hacettepe.edu.tr

Abstract

The 3-[1-(6-methoxy-2-naphtyl)ethyl]-6-(2,4-dichlorophenyl)-7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine, C23H18Cl2N4OS compound was synthesized, as a member of the family of novel potential anticancer agents. The structure of the title compound was characterized by IR, 1H-NMR, mass spectroscopy, and elemental analysis, previously. In this study, the crystal structure of this compound has been determined from synchrotron X-ray powder diffraction data. The crystal structure was solved by simulated annealing and the final structure was achieved by Rietveld refinement method using soft restrains on all interatomic bond lengths and angles. This compound crystallizes in space group P21, Z = 2, with the unit-cell parameters a = 15.55645(11) Å, b = 8.61693(6) Å, c = 8.56702(6) Å, β = 104.3270(4)°, and V = 1112.68(1) Å3. In the crystal structure, strong C−H⋯π and weak intermolecular hydrogen-bonding interactions link the molecules into a three-dimensional network. The molecules are in a head-to-head arrangement in the unit cell.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Aziz, H. A., Ng, S. W. and Tiekink, E. R. T. (2011). “2-(6-Phenyl-7H-1,2,4-triazolo[3,4-b]-[1,3,4]-thiadiazin-3-yl)-1,3-benzothiazole,” Acta Crystallogr. E 67, o2610.CrossRefGoogle Scholar
Albrecht, B. K., Harmange, J. C., Bauer, D., Berry, L., Bode, C., Boezio, A. A., Chen, A., Choquette, D., Dussault, I., Fridrich, C., Hirai, S., Hoffman, D., Larrow, J. F., Kaplan-Lefko, P., Lin, J., Lohman, J., Long, A. M., Moriguchi, J., O'Connor, A., Potashman, M. H., Reese, M., Rex, K., Siegmund, A., Shah, K., Shimanovich, R., Springer, S. K., Teffera, Y., Yang, Y., Zhang, Y. and Bellon, S. F. (2008). “Discovery and optimization of triazolopyridazines as potent and selective inhibitors of the c-Met kinase,” J. Med. Chem. 51(10), 28792882.CrossRefGoogle ScholarPubMed
Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Rizzi, R. and Werner, P.-E. (2000). “New techniques for indexing: N-TREOR in EXPO,” J. Appl. Crystallogr. 33, 11801186.CrossRefGoogle Scholar
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.CrossRefGoogle Scholar
Amir, M. and Agarwal, H. K. (2005). “Role of COX-2 selective inhibitors for prevention and treatment of cancer,” Pharmazie 60, 563570.Google ScholarPubMed
Aytaç, P. S., Tozkoparan, B., Kaynak, F. B., Aktay, G., Göktaş, Ö. and Ünvar, S. (2009). “Synthesis of 3,6-disubstituted 7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines as novel analgesic/anti-inflammatory compounds,” Eur. J. Med. Chem. 44, 45284538.CrossRefGoogle Scholar
Aytaç, P. S., Durmaz, I., Houston, D. R., Çetin-Atalay, R. and Tozkoparan, B. (2016). “Novel triazolothiadiazines act as potent anticancer agents in liver cancer cells through Akt and ASK-1 proteins,” Bioorg. Med. Chem. 24(4), 858872.CrossRefGoogle ScholarPubMed
Bhat, K. S., Poojary, B., Prasad, D. J., Naik, P. and Holla, B. S. (2009). “Synthesis and antitumor activity studies of some new fused 1,2,4-triazole derivatives carrying 2,4-dichloro-5-fluorophenyl moiety,” Eur. J. Med. Chem. 44(12), 50665070.CrossRefGoogle ScholarPubMed
Boezio, A. A., Berry, L., Albrecht, B. K., Bauer, D., Bellon, S. F., Bode, C., Chen, A., Choquette, D., Dussault, I., Fang, M., Hirai, S., Kaplan-Lefko, P., Larrow, J. F., Lin, M. H., Lohman, J., Potashman, M. H., Qu, Y., Rex, K., Santostefano, M., Shah, K., Shimanovich, R., Springer, S. K., Teffera, Y., Yang, Y., Zhang, Y. and Hermange, J. C. (2009). “Discovery and optimization of potent and selective triazolopyridazine series of c-Met inhibitors,” Bioorg. Med. Chem. Lett. 19(22), 63076312.CrossRefGoogle ScholarPubMed
Boultif, A. and Louer, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.CrossRefGoogle Scholar
Coelho, A. A. (2009). TOPAS 4.2: General Profile and Structure Analysis Software for Powder Diffraction Data- User's Manual (Bruker AXS, Karlsruhe Germany).Google Scholar
Cooper, R. I., Thomson, A. L. and Watkin, D. J. (2010). “CRYSTALS enhancements: dealing with hydrogen atoms in refinement,” J. Appl. Crystallogr. 43, 11001107.CrossRefGoogle Scholar
Cuzick, J., Otto, F., Baron, J. A., Brown, P. H., Burn, J., Greenwald, P., Jankowski, J., La Vecchia, C., Meyskens, F., Senn, H. J. and Thun, M. (2009). “Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement,” Lancet Oncol. 10, 501507.CrossRefGoogle ScholarPubMed
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.CrossRefGoogle Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H. (2009). “OLEX2: a complete structure solution, refinement and analysis program,” J. Appl. Crystallogr. 42, 339341.CrossRefGoogle Scholar
Farrugia, L. J. (2012). “WinGX and ORTEP for Windows: an update,” J. Appl. Crystallogr. 45, 849854.CrossRefGoogle Scholar
Finger, L. W., Cox, D. E. and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27, 892900.CrossRefGoogle Scholar
Fun, H. K., Chantrapromma, S., Bhat, M. A. and Abdel-Aziz, H. A. (2012). “(Z)-7-[2-(4-Bromophenyl)hydrazin-1-yl-idene]-6-methyl-3-(pyridin-4-yl)-7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole,” Acta Crystallogr. E 68, o1512o1513.CrossRefGoogle Scholar
Guadagni, F., Ferroni, P., Palmirotta, R., Del Monte, G., Formica, V. and Roselli, M. (2007). “Non-steroidal anti-inflammatory drugs in cancer prevention and therapy,” Anticancer Res. 27, 31473162.Google ScholarPubMed
Gupta, S. C., Sung, B. Y., Prasad, S., Webb, L. J. and Aggarwal, B. B. (2013). “Cancer drug discovery by repurposing: teaching new tricks to old dogs,” Trends Pharmacol. Sci. 34, 508517.4.CrossRefGoogle ScholarPubMed
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. and Hutchison, G. R. (2012). “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminform. 4, 17.CrossRefGoogle ScholarPubMed
Ibrahim, D. A. (2009). “Synthesis and biological evaluation of 3,6-disubstituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as a novel class of potential anti-tumor agents,” Eur. J. Med. Chem. 44(7), 27762781.CrossRefGoogle Scholar
Ivashkevich, L. S., Serebryanskaya, T. V., Lyakhov, A. S. and Gaponik, P. N. (2011). “An X-ray powder diffraction study of cis-dichlorobis (2-methyl-2H-tetrazol-5-amine-κN4) platinum(II), a tetrazole-containing analogue of cisplatin,” Acta Crystallogr. C 67, m195m198.CrossRefGoogle Scholar
Kaynak, F. B., Aytaç, S. P. and Tozkoparan, B. (2010). “A joint theoretical and experimental structural study of two novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives,” Struct. Chem. 21, 795802.CrossRefGoogle Scholar
Khan, I., Ibrar, A., Zaib, S., Ahmad, S., Furtmann, N., Hameed, S., Simpson, J., Bajorath, J. and Iqbal, J. (2014a). “Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazines scaffolds: synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis,” Bioorg. Med. Chem. 22, 61636173.CrossRefGoogle ScholarPubMed
Khan, I., Zaib, S., Ibrar, A., Rama, N. H., Simpson, J. and Iqbal, J. (2014b). “Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines,” Eur. J. Med. Chem. 78, 167177.CrossRefGoogle Scholar
Lauffer, D., Aronov, A., Li, P., Deininger, D., Mcginty, K., Stamos, D., Come, J. and Stewart, M. (2007). Preparation of fused triazoles as inhibitors of c-Met tyrosine kinase, WO2007064797.Google Scholar
Lauffer, D., Li, P. and Mcginty, K. (2010). Amino pyrazole triazole thiadiazole inhibitors of c-Met protein kinase, WO2010138665A1.Google Scholar
Le Bail, A. (2004). “Monte Carlo indexing with McMaille,” Powder Diffr., 19(3), 249254.CrossRefGoogle Scholar
Lesyk, R., Vladzimirska, E., Holota, S., Zaprutko, L. and Gzella, A. (2007). “New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: synthesis and anticancer evaluation,” Eur. J. Med. Chem. 42(5), 641648.CrossRefGoogle Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. and van de Streek, J. (2006). “Mercury: visualization and analysis of crystal structures,” J. Appl. Crystallogr. 39, 453457.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” J Phys. B 192, 5569.CrossRefGoogle Scholar
Spek, A. L. (2003). “Single-crystal structure validation with the program PLATON,” J. Appl. Crystallogr. 36, 713.CrossRefGoogle Scholar
Thompson, P., Cox, D. E. and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20, 7983.CrossRefGoogle Scholar
Visser, J. W. (1969). “Fully automatic program for finding the unit cell from powder data,” J. Appl. Cryst. 2, 8995.CrossRefGoogle Scholar
Zhang, F. J., Vojkovsky, T., Huang, P., Liang, C., Do, S. H., Koenig, M. and Cui, J. (2005). Triazolotriazine compounds and uses thereof, WO2005010005A1.Google Scholar
Supplementary material: File

Gündoğdu et al. supplementary material

Gündoğdu et al. supplementary material 1

Download Gündoğdu et al. supplementary material(File)
File 3.3 MB
Supplementary material: File

Gündoğdu et al. supplementary material

Gündoğdu et al. supplementary material 2

Download Gündoğdu et al. supplementary material(File)
File 812.8 KB