Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-10T05:41:50.063Z Has data issue: false hasContentIssue false

Study of the conversion of N-carbamoyl-L-proline to hydantoin-L-proline using powder synchrotron X-ray diffraction

Published online by Cambridge University Press:  29 February 2012

Luis E. Seijas
Affiliation:
Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
Asiloé J. Mora*
Affiliation:
Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
Gerzon E. Delgado*
Affiliation:
Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
Michela Brunelli
Affiliation:
Institut Laue Langevin, BP 156, F-38042 Grenoble Cedex, France
Andrew N. Fitch
Affiliation:
European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
*
a)Electronic mail: asiloe@ula.ve
b)Electronic mail: gerzon@ula.ve

Abstract

The solvent-free conversion of N-carbamoyl-L-proline to hydantoin-L-proline by direct heating at 470 K is reported. A reaction mechanism is proposed based on a nucleophilic intramolecular substitution reaction involving both the lone pair of the NH2 group and the carboxylic acid group of the N-carbamoyl-L-proline. The DSC and TGA experiments show rising of the baselines of the curves prior to melting and decomposition given evidence of the onset of the thermal reaction. NMR experiments were used to identify the product of the reaction, hydantoin-L-proline, whose crystal structure was obtained from X-ray synchrotron powder diffraction data collected on the solidified melt. This compound displays a crystal packing directed by hydrogen bonds forming a layered structure pile up along the c direction.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arte, E., Tinant, B., Declercq, J., Germain, G., and van Meerssche, M. (1980). “Structure of 2 proline hydantoin derivatives l-proline hydantoin and d-allohydroxyproline hydantoin,” Bull. Soc. Chim. Belg. BSCBAG 89, 379384.10.1002/bscb.19800890508Google Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. JACGAR 37, 724731.10.1107/S0021889804014876Google Scholar
Burton, S. G. and Dorrington, R. A. (2004). “Hydantoin-hydrolysing enzymes for the enantioselective production of amino acids: New insights and applications,” Tetrahedron: Asymmetry TASYE3 15, 27372741.10.1016/j.tetasy.2004.07.061CrossRefGoogle Scholar
Camerman, A. and Camerman, N. (1971). “The stereochemical basis of anticonvulsant drug action. I. The crystal and molecular structure of diphenylhydantoin, a noncentrosymmetric structure solved by centric symbolic addition,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 27, 22052211.10.1107/S0567740871005570Google Scholar
Comber, R. N., Reynolds, C. R., Friedrich, J. D., Manguikian, R. A., Buckheit, R. W., Truss, J. W., Shannon, W. M., and Secrist, J. A. (1992). “5,5-disubstituted hydantoins—Syntheses and anti-HIV activity,” J. Med. Chem. JMCMAR 35, 35673572.10.1021/jm00097a014Google Scholar
Cortes, S., Liao, Z. K., Watson, D., and Kohn, H. (1985). “Effect of structural modification of the hydantoin ring on anticonvulsant activity,” J. Med. Chem. JMCMAR 28, 601606.10.1021/jm50001a012Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: A program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. JACGAR 39, 910915.10.1107/S0021889806042117Google Scholar
Delgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A., and Briceño, A. (2007). “(S)-5-benzylimidazolidine-2,4-dione monohydrate,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 63, o448–o450.10.1107/S0108270107028090CrossRefGoogle ScholarPubMed
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113.10.1107/S002188986800508XGoogle Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic-compounds,” Acc. Chem. Res. ACHRE4 23, 120126.10.1021/ar00172a005Google Scholar
Finger, L. W., Cox, L. W., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. JACGAR 27, 892900.10.1107/S0021889894004218Google Scholar
Fitch, A. N. (2004). “The high resolution powder diffraction beam line at ESRF,” J. Res. Natl. Inst. Stand. Technol. JRITEF 109, 133142.Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T. Jr., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A. (2003). GAUSSIAN03, Revision B. 02 (Computer Software), Gaussian, Inc., Wallingford, CT.Google Scholar
Gauthier, T., Yokum, T., Morales, G., McLaughlin, M., Liu, Y., and Fronczek, F. (1997). “Two cyclohexanespiro-5-hydantoin monohydrates,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 53, 16591661.10.1107/S0108270197007488Google Scholar
Griffin, J. F., Duax, W., and Weeks, M. (1984). Atlas of Steroid Structure (Plenum Publishing Corporation, New York).Google Scholar
Hanessian, S., Sanceau, J. Y., and Chemla, P. (1995). “Synthesis of surrogate structures related to the herbicidal agent hydantocidin,” Tetrahedron TETRAB 51, 66696678.10.1016/0040-4020(95)00324-2Google Scholar
Kieć-Kononowicz, K., Stadnicka, K., Mitka, A., Pękala, E., Filipek, B., Sapa, J., and Zygmunt, M. (2003). “Synthesis, structure and antiarrhythmic properties evaluation of new basic derivatives of 5,5-diphenylhydantoin,” Eur. J. Med. Chem. EJMCA5 38, 555566.10.1016/S0223-5234(03)00075-8CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Marton, J., Enisz, J., Hosztafi, S., and Timar, T. (1993). “Preparation and fungicidal activity of 5-substituted hydantoins and their 2-thio analogs,” J. Agric. Food Chem. JAFCAU 41, 148152.10.1021/jf00025a031CrossRefGoogle Scholar
Merrit, H. H. and Putnam, T. J. (1938). “A new series of anticonvulsant drugs tested by experiments on animals,” Schweiz Arch. Neurol. Psychiatr. ZZZZZZ 39, 10031015.CrossRefGoogle Scholar
Opačić, N., Barbarić, M., Zorc, B., Cetina, M., Nagl, A., Frković, D., Kralj, M., Pavelić, K., Balzarini, J., Andrei, G., Snoeck, R., De Clercq, E., Raić-Malić, S., and Mintas, M. (2005). “The novel L- and D-amino acid derivatives of hydroxyurea and hydantoins: Synthesis, X-ray crystal structure study, and cytostatic and antiviral activity evaluations,” J. Med. Chem. JMCMAR 48, 475482.10.1021/jm040869iGoogle Scholar
Perreux, L., Loupy, A., and Volatron, F. (2002). “Solvent-free preparation of amides from acids and primary amines under microwave irradiation,” Tetrahedron TETRAB 58, 21552162.10.1016/S0040-4020(02)00085-6Google Scholar
Poupaert, J. H., Vandervorst, D., Guiot, P., Mustafa, M. M., and Dumont, P. (1984). “Structure activity relationships of phenytoin-like anticonvulsant drugs,” J. Med. Chem. JMCMAR 27, 7678.10.1021/jm00367a015Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571.10.1107/S0021889869006558Google Scholar
Rizzi, J. P., Schnur, R., Hutson, N., Kraus, K., and Kelbaugh, P. (1989). “Rotationally restricted mimics of rigid molecules—Nonspirocyclic hydantoin aldose reductase inhibitors,” J. Med. Chem. JMCMAR 32, 12081213.10.1021/jm00126a011CrossRefGoogle ScholarPubMed
Seijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A., and Briceño, A. (2007). “(2S)-1-carbamoylpyrrolidine-2-carboxylic acid,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 63, o303–o305.10.1107/S0108270107014102Google Scholar
Seijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A., and Uzcategui, J. (2006). “Síntesis y caracterización de los derivados N-carbamoilo e hidantoina de L-prolina,” Avances en Química 1, 3–7.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065.10.1107/S002188987901178XGoogle Scholar
Tanaka, K. (2003). Solvent-Free Organic Synthesis (Wiley-VCH Velarg Gmbh and Co. KGaA, Weinheim).10.1002/3527601821Google Scholar
Thenmozhiyal, J. C., Wong, P. T., and Chui, W. -K. (2004). “Anticonvulsant activity of phenylmethylenehydantoins: A structure-activity relationship study,” J. Med. Chem. JMCMAR 47, 15271535.10.1021/jm030450cGoogle Scholar
Thompson, P., Cox, D., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. JACGAR 20, 7983.10.1107/S0021889887087090CrossRefGoogle Scholar
Tompkins, E. (1986). “5,5-diaryl-2-thiohydantoins and 5,5-diaryl-n-3-substituted-2-thio hydantoins as potential hypolipidemic agents,” J. Med. Chem. JMCMAR 29, 855859.10.1021/jm00155a042Google Scholar
Vouyiouka, S. N., Karakatsani, E. K., and Papaspyride, C. D. (2005). “Solid state polymerization,” Prog. Polym. Sci. PRPSB8 30, 1037.10.1016/j.progpolymsci.2004.11.001CrossRefGoogle Scholar
Wenz, G., Steinbrunn, M. B., and Landfester, K. (1997). “Solid state polycondensation within cyclodextrin channels leading to water soluble polyamide rotaxanes,” Tetrahedron TETRAB 53, 1557515592.10.1016/S0040-4020(97)00980-0Google Scholar
Wu, J. P., Emeigh, J., Gao, D. H. A., Goldberg, D. R., Kuzmich, D., Miao, C., Potocki, I., Qian, K. C., Sorcek, R. J., Jeanfavre, D. D., Kishimoto, K., Mainolfi, E. A., Nabozny, G., Peng, C., Reilly, P., Rothlein, R., Sellati, R. H., Woska, J. R., Chen, S., Gunn, J. A., O’Brien, D., Norris, S. H., and Kelly, T. A. (2004). “Second-generation lymphocyte function-associated antigen-1 inhibitors: 1H-imidazo[1,2-alpha]imidazol-2-one derivatives,” J. Med. Chem. JMCMAR 47, 53565366.10.1021/jm049657bGoogle Scholar
Yu, F., Schwalbe, C. H., and Watkin, D. (2004). “Hydantoin and hydrogen-bonding patterns in hydantoin derivatives,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 60, o714–o717.10.1107/S0108270104017706CrossRefGoogle ScholarPubMed