Skip to main content
×
×
Home

Whole powder pattern decomposition methods and applications: A retrospection

  • Armel Le Bail (a1)
Abstract

Methods extracting fast all the peak intensities from a complete powder diffraction pattern are reviewed. The genesis of the modern whole powder pattern decomposition methods (the so-called Pawley and Le Bail methods) is detailed and their importance and domains of application are decoded from the most cited papers citing them. It is concluded that these methods represented a decisive step toward the possibility to solve more easily, if not routinely, a structure solely from a powder sample. The review enlightens the contributions from the Louër’s group during the rising years 1987–1993.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Whole powder pattern decomposition methods and applications: A retrospection
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Whole powder pattern decomposition methods and applications: A retrospection
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Whole powder pattern decomposition methods and applications: A retrospection
      Available formats
      ×
Copyright
Corresponding author
a)Electronic mail: alb@cristal.org
References
Hide All
Abrahams, I., Lightfoot, P., and Bruce, P. G. (1993). “Li6Zr2O7, a new anion vacancy ccp based structure, determined by ab initio powder diffraction methods,” J. Solid State Chem.JSSCBI10.1006/jssc.1993.1175 104, 397403.
Aftati, A., Champarnaud-Mesjard, J.-C., and Frit, B. (1993). “Crystal structure of a new oxyfluoride, Cd4F6O: Relations to the fluorite and the β‐Bi2O3 types,” Eur. J. Solid State Inorg. Chem.EJSCE5 30, 10631073.
Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G., and Rizzi, R. (1999a). “EXPO: A program for full powder pattern decomposition and crystal structure solution,” J. Appl. Crystallogr.JACGAR10.1107/S0021889898007729 32, 339340.
Altomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., and Polidori, G. (1995). “EXTRA: A program for extracting structure-factor amplitudes from powder diffraction data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889895005619 28, 842846.
Altomare, A., Caliandro, R., Cuocci, C., da Silva, L., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2004). “The use of error-correcting codes for the decomposition of a powder diffraction pattern,” J. Appl. Crystallogr.JACGAR 37, 204209.
Altomare, A., Caliandro, R., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2003). “A systematic procedure for the decomposition of a powder diffraction pattern,” J. Appl. Crystallogr.JACGAR 36, 906913.
Altomare, A., Carrozzini, B., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., and Rizzi, R. (1996b). “Solving crystal structures from powder data. I. The role of the prior information in the two-stage method,” J. Appl. Crystallogr.JACGAR 29, 667673.
Altomare, A., Cascarano, G., Giacovazzo, C., and Guagliardi, A. (1994). “Early finding of preferred orientation: A new method,” J. Appl. Crystallogr.JACGAR 27, 10451050.
Altomare, A., Foadi, J., Giacovazzo, C., Guagliardi, A., and Moliterni, A. G. G. (1996a). “Solving crystal structures from powder data. II. Pseudotranslational symmetry and powder-pattern decomposition,” J. Appl. Crystallogr.JACGAR 29, 674681.
Altomare, A., Foadi, J., Giacovazzo, C., Moliterni, A. G. G., Burla, M. C., and Polidori, G. (1998). “Solving crystal structures from powder data. IV. The use of the Patterson information for estimating the ∣F∣’s,” J. Appl. Crystallogr.JACGAR 31, 7477.
Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., and Rizzi, R. (1999b). “Solving crystal structures from powder data V. Located molecular fragment and powder-pattern decomposition,” J. Appl. Crystallogr.JACGAR 32, 963967.
Altomare, A., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2001). “A random procedure for the decomposition of a powder pattern in EXPO,” J. Appl. Crystallogr.JACGAR 34, 704709.
Amoros, P., Beltran-Porter, D., Le Bail, A., Férey, G., and Villeneuve, G. (1988). “Crystal structure of A(VO2)(HPO4) (A=NH4+,K+,Rb+) solved from X-ray powder diffraction,” Eur. J. Solid State Inorg. Chem.EJSCE5 25, 599607.
Aranda, M. A. G., Attfield, J. P., and Bruque, S. (1992). “A remarkable change in framework cation position upon lithium exchange: The crystal structure of LiMnPO4(OH),” Angew. Chem., Int. Ed. Engl.ACIEAY 31, 10901092.
Baerlocher, Ch. (1990). “EXTRACT, A FORTRAN program for the extraction of integrated intensities from a powder pattern,” Institut für Kristallograpie, ETH, Zürich, Switzerland.
Baumgartner, M., Schmalle, H., and Baerlocher, Ch. (1993). “Synthesis, characterization, and crystal structure of three homoleptic copper(I) thiolates: (Cu(CH3S))n, [(C6H5)4P+]2[Cu5(CH3S)7]∙C2H6O2, and [(C3H7)4N+]2[Cu4(CH3S)6]∙CH4O,” J. Solid State Chem.JSSCBI 107, 6375.
Bénard, P., Louër, D., Dacheux, N., Brandel, V., and Genet, M. (1994a). “U(UO2)(PO4)2, a new mixed-valence uranium orthophosphate, ab initio structure determination from powder diffraction data and optical and X-ray photoelectron spectra,” Chem. Mater.CMATEX 6, 10491058.
Bénard, P., Louër, M., and Louër, D. (1991). “Crystal structure determination of Zr(OH)2(NO3)2.4∙7H2O from X-ray powder diffraction data,” J. Solid State Chem.JSSCBI10.1016/0022-4596(91)90217-6 94, 2735.
Bénard, P., Seguin, L., Louër, D., and Figlarz, M. (1994b). “Structure of MoO3∙1∕2H2O by conventional X-ray powder diffraction,” J. Solid State Chem.JSSCBI 108, 170176.
Bentrup, U., Le Bail, A., Duroy, H., and Fourquet, J. L. (1992). “Polymorphism of CsAlF4. Synthesis and structure of two new crystalline forms,” Eur. J. Solid State Inorg. Chem.EJSCE5 29, 371381.
Bergmann, J., Le Bail, A., Shirley, R., and Zlokazov, V. (2004). “Renewed interest in powder diffraction data indexing,” Z. Kristallogr.ZEKRDZ 219, 783790.
Byrom, P. G. and Lucas, P. W. (1993). “POLISH: Computer program for improving the accuracy of structure-factor magnitudes obtained from powder data,” J. Appl. Crystallogr.JACGAR 26, 137139.
Caglioti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum.NUINAO10.1016/0369-643X(58)90029-X 3, 223228.
Carrozzini, B., Giacovazzo, C., Guagliardi, A., Rizzi, R., Burla, M. C., and Polidori, G. (1997). “Solving crystal structures from powder data. III. The use of the probability distributions for estimating the ∣F∣’s,” J. Appl. Crystallogr.JACGAR 30, 9297.
Cheary, R. W. and Coelho, A. (1992). “A fundamental parameters approach to X-ray line-profile fitting,” J. Appl. Crystallogr.JACGAR10.1107/S0021889891010804 25, 109121.
Christensen, A. N., Andersen, E. K., Andersen, I. G. K., Alberti, G., Nielsen, M., and Lehmann, M. S. (1990). “X-ray-powder diffraction study of layer compounds-The crystal structure of α‐Ti(HPO4)2∙H2O and a proposed structure for γ‐Ti(H2PO4)(PO4)∙2H2O,” Acta Chem. Scand.ACHSE7 44, 865872.
Christensen, A. N., Cox, D. E., and Lehmann, M. S. (1989). “A crystal structure determination of PbC2O4 from synchrotron X-ray and neutron powder diffraction data,” Acta Chem. Scand.ACHSE7 43, 1925.
Christensen, A. N., Hazell, R. G., Hewat, A. W., and O’Reilly, K. P. J. (1991). “The crystal structure of PbS2O3,” Acta Scand. 45, 469473.
Clarke, S. J., Cockcroft, J. K., and Fitch, A. N. (1993). “The structure of solid CF3I,” Z. Kristallogr.ZEKRDZ 206, 8795.
Cooper, M. J., Rouse, K. D., and Sakata, M. (1981). “An alternative to the Rietveld profile refinement method,” Z. Kristallogr.ZEKRDZ 157, 101117.
David, W. I. F. (1987). “The probabilistic determination of intensities of completely overlapping reflections in powder diffraction patterns,” J. Appl. Crystallogr.JACGAR10.1107/S0021889887086618 20, 316319.
David, W. I. F. (2004). “On the equivalence of the Rietveld method and the correlated integrated intensities method in powder diffraction,” J. Appl. Crystallogr.JACGAR 37, 621628.
David, W. I. F., Shankland, K., McCusker, L. B., and Baerlocher, Ch. (2002). in Structure Determination from Powder Diffraction Data, edited by David, W. I. F., Shankland, K., McCusker, L. B., and Baerlocher, Ch. (Oxford Science, Oxford), Chap. 1, pp. 112.
David, W. I. F., Shankland, K. and Shankland, N. (1998). “Routine determination of molecular crystal structures from powder diffraction data,” Chem. Commun. (Cambridge)CHCOFS, 931932.
David, W. I. F. and Sivia, D. S. (2002). in Structure Determination from Powder Diffraction Data, edited by David, W. I. F., Shankland, K., McCusker, L. B., and Baerlocher, Ch. (Oxford Science, Oxford), Chap. 8, pp. 136161.
Delaplane, R. G., David, W. I. F., Ibberson, R. M., and Wilson, C. C. (1993). “The ab initio crystal structure determination of α-malonic acid from neutron powder diffraction data,” Chem. Phys. Lett.CHPLBC 201, 7578.
Dong, W. and Gilmore, C. J. (1998). “The ab initio solution of structures from powder diffraction data: The use of maximum entropy and likelihood to determine the relative amplitudes of overlapped reflections using the pseudophase concept,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 54, 438446.
Eastermann, M. A. and David, W. I. F. (2002). Structure Determination from Powder Diffraction Data, edited by David, W. I. F., Shankland, K., McCusker, L. B., and Baerlocher, Ch. (Oxford Science, Oxford), Chap. 12, pp. 202218.
Eastermann, M. A. and Gramlich, V. (1993). “Improved treatment of severely or exactly overlapping Bragg reflections for the application of direct methods to powder data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889892012871 26, 396404.
Eastermann, M. A., McCusker, L. B., and Baerlocher, Ch. (1992). “Ab initio structure determination from severely overlapping powder diffraction data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889892004862 25, 539543.
Evans, J. S. O., Mary, T. A., Vogt, T., Subramanian, M. A., and Sleight, A. W. (1996). “Negative thermal expansion in ZrW2O8 and HfW2O8,” Chem. Mater.CMATEX10.1021/cm9602959 8, 28092823.
Fitch, A. N. and Cockcroft, J. K. (1992). “Structure of solid tribromofluoromethane CFBr3 by powder neutron diffraction,” Z. Kristallogr.ZEKRDZ 202, 243250.
Fjellvàg, H. and Karen, P. (1992). “Crystal structure of magnesium sesquicarbide,” Inorg. Chem.INOCAJ 31, 32603263.
Fourquet, J. L., Le Bail, A., Duroy, H., and Moron, M. C. (1989). “(NH4)2FeF5, crystal structures of its α and β forms,” Eur. J. Solid State Inorg. Chem.EJSCE5 26, 435443.
Gao, Y., Guery, J., and Jacoboni, C. (1992). “X-ray powder structure determination of NaBaZrF7,” Eur. J. Solid State Inorg. Chem.EJSCE5 29, 12851293.
Gascoigne, D., Tarling, S. E., Barnes, P., Pygall, C. F., Bénard, P., and Louër, D. (1994). “Ab initio structure determination of Zr(OH)2SO4∙3H2O using conventional X-ray powder diffraction,” J. Appl. Crystallogr.JACGAR10.1107/S0021889893006211 27, 399405.
Giacovazzo, C. (1996). “Direct methods and powder data: State of the art and perspectives,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ10.1107/S0108767395013651 52, 331339.
Guillou, N., Louër, M., and Louër, D. (1994). “An X-ray and neutron powder diffraction study of a new polymorphic phase of copper hydroxide nitrate,” J. Solid State Chem.JSSCBI 109, 307314.
Harris, K. D. M. and Tremayne, M. (1996). “Crystal structure determination from powder diffraction data,” Chem. Mater.CMATEX10.1021/cm960218d 8, 25542570.
Harrison, W. T. A., Gier, T. H., and Stucky, G. D. (1993). “The synthesis and ab initio structure determination of Zn4O(BO3)2, a microporous zincoborate constructed of fused subunits of three- and five-membered rings,” Angew. Chem., Int. Ed. Engl.ACIEAY 32, 724726.
Hill, R. J. and Fisher, R. X. (1990). “Profile agreement indices in Rietveld and pattern-fitting analysis,” J. Appl. Crystallogr.JACGAR10.1107/S0021889890006094 23, 462468.
Hiraguchi, H., Hashizume, H., Fukunaga, O., Takenaka, A., and Sakata, M. (1991). “Structure determination of magnesium boron nitride, Mg3BN3, from X-ray powder diffraction data,” J. Appl. Crystallogr.JACGAR 24, 286292.
Hriljac, J. A., Parise, J. B., Kwei, G. H., and Schwartz, K. B. (1991). “The ab initio crystal structure determination of CuPt3O6 from a combination of synchrotron X-ray and neutron powder diffraction data,” J. Phys. Chem. SolidsJPCSAW 52, 12731279.
Hriljac, J. A. and Torardi, C. C. (1993). “Synthesis and structure of the novel layered oxide BiMo2O7OH∙2H2O,” Inorg. Chem.INOCAJ 32, 60036007.
Izumi, F. and Ikeda, T. (2000). “A Rietveld-analysis program RIETAN-98 and its applications to zeolites,” Mater. Sci. ForumMSFOEP 321-3, 198203.
Jansen, E., Schäfer, W., and Will, G. (1988). “Profile fitting and the two-stage method in neutron powder diffractometry for structure and texture analysis,” J. Appl. Crystallogr.JACGAR10.1107/S0021889888001013 21, 228239.
Jansen, J., Peschar, R., and Schenk, H. (1992). “On the determination of accurate intensities from powder diffraction data. I. Whole-pattern fitting with a least-squares procedure; and II. Estimation of intensities of overlapping reflections,” J. Appl. Crystallogr.JACGAR10.1107/S0021889891012104 25, 231–236 and 237–243.
Jouanneaux, A., Fitch, A. N., and Cockcroft, J. K. (1992b). “The crystal structure of CBrF3 by high-resolution powder neutron diffraction,” Mol. Phys.MOPHAM 1, 4550.
Jouanneaux, A., Joubert, O., Evain, M., and Ganne, M. (1992a). “Structure determination of Tl4V2O7 from powder diffraction data using an Inel X-ray PSD, stereochemical activity of thallium(I) lone pair,” Powder Diffr.PODIE2 7, 206211.
Jouanneaux, A., Joubert, O., Fitch, A. N., and Ganne, M. (1991). “Structure determination of β‐Tl3VO4 from synchrotron radiation powder diffraction data, stereochemical role of the lone pair of thallium(I),” Mater. Res. Bull.MRBUAC 26, 973982.
Jouanneaux, A., Murray, A. D., and Fitch, A. N. (1990). Program MPROF.
Kariuki, B. M., Belmonte, S. A., McMahon, M. I., Johnston, R. L., Harris, K. D. M., and Nelmes, R. J. (1999). “A new approach for indexing powder diffraction data based on whole-profile fitting and global optimization using a genetic algorithm,” J. Synchrotron Radiat.JSYRES10.1107/S0909049598017932 6, 8792.
Lafontaine, M.-A., Le Bail, A., and Férey, G. (1990). “Copper containing minerals, I. Cu3V2O7(OH)2.∙2H2O, the synthetic homologue of volborthite; crystal structure determination from X-ray and neutron data; structural correlations,” J. Solid State Chem.JSSCBI10.1016/S0022-4596(05)80078-7 85, 220227.
Laligant, Y. (1992a). “Structure determination of Na2PdP2O7 from X-ray powder diffraction,” Eur. J. Solid State Inorg. Chem.EJSCE5 29, 8394.
Laligant, Y. (1992b). “Crystal structure of Li2PdP2O7 solved from X-ray powder diffraction,” Eur. J. Solid State Inorg. Chem.EJSCE5 29, 239247.
Laligant, Y., Férey, G., and Le Bail, A. (1991). “Crystal structure of Pd(NO3)2(H2O)2,” Mater. Res. Bull.MRBUAC 26, 269275.
Laligant, Y. and Le Bail, A. (1993). “Synthesis and crystal structure of Li8Bi2PdO10 determined ab initio from X-ray powder diffraction data,” Eur. J. Solid State Inorg. Chem.EJSCE5 30, 689698.
Laligant, Y., Le Bail, A., and Férey, G. (1989). “Complex palladium oxides. V. Crystal structure of LiBiPd2O4, an example of three different fourfold coordinations of cations,” J. Solid State Chem.JSSCBI 81, 5864.
Laligant, Y., Le Bail, A., Férey, G., Avignant, D., and Cousseins, J. C. (1988a). “Determination of the crystal structure of Li2TbF6 from X-ray and neutron powder diffraction. An example of lithium in five-fold coordination,” Eur. J. Solid State Inorg. Chem.EJSCE5 25, 551563.
Laligant, Y., Le Bail, A., Férey, G., Hervieu, M., Raveau, B., Wilkinson, A., and Cheetham, A. K. (1988b). “Synthesis and ab-initio structure determination from X-ray powder data of Ba2PdO3 with sevenfold coordinated Ba2+. Structural correlations with K2NiF4 and Ba2NiF6,” Eur. J. Solid State Inorg. Chem.EJSCE5 25, 237247.
Langford, J. I., Boultif, A., Auffredic, J. P., and Louër, D. (1993). “The use of pattern decomposition to study the combined X-ray diffraction effects of crystallite size and stacking faults in ex-oxalate zinc oxide,” J. Appl. Crystallogr.JACGAR10.1107/S0021889892007684 26, 2233.
Langford, J. I. and Louër, D. (1991). “High-resolution powder diffraction studies of copper(II) oxide,” J. Appl. Crystallogr.JACGAR 24, 149155.
Langford, J. I. and Louër, D. (1996). “Powder diffraction,” Rep. Prog. Phys.RPPHAG10.1088/0034-4885/59/2/002 59, 131234.
Langford, J. I., Louër, D., Sonneveld, E. J., and Wisser, J. W. (1986). “Applications of total pattern fitting to a study of crystallite size and strain in zinc oxide powder,” Powder Diffr.PODIE2 1, 211221.
Le Bail, A. (1989). “Structure determination of NaPbFe2F9 by X-ray powder diffraction,” J. Solid State Chem.JSSCBI 83, 267271.
Le Bail, A. (1993). “β‐Ba3AlF9, a complex structure determined from conventional X-ray powder diffraction,” J. Solid State Chem.JSSCBI 103, 287291.
Le Bail, A. (2001). “ESPOIR: A program for solving structures by Monte Carlo analysis of powder diffraction data,” Mater. Sci. ForumMSFOEP 378–381, 6570.
Le Bail, A. (2005a). “SDPD—Database,” http://www.cristal.org/iniref.html
Le Bail, A. (2005b). “Le Bail method full saga,” http://www.cristal.org/iniref/lbm-story
Le Bail, A. (2005c). “Inorganic structure prediction with GRINSP,” J. Appl. Crystallogr.JACGAR 38, 389395.
Le Bail, A. and Cranswick, L. M. D. (2001). “Revisiting the 1998 SDPD round robin results,” IUCr CPD Newsletter 25, 7–9.
Le Bail, A. and Cranswick, L. M. D. (2003). “SDPD round robin 2002 results,” IUCr CPD Newsletter 29, 3134.
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull.MRBUAC10.1016/0025-5408(88)90019-0 23, 447452.
Le Bail, A., Duroy, H., and Fourquet, J. L. (1992a). “Crystal structure and thermolysis of K2(H5O2)Al2F9,” J. Solid State Chem.JSSCBI 98, 151158.
Le Bail, A., Férey, G., Amoros, P., and Beltran-Porter, D. (1989a). “Structure of vanadyl hydrogenphosphate dihydrate α‐VO(HPO4)∙2H2O solved from X-ray and neutron powder diffraction,” Eur. J. Solid State Inorg. Chem.EJSCE5 26, 419426.
Le Bail, A., Férey, G., Amoros, P., Beltran-Porter, D., and Villeneuve, G. (1989b). “Crystal structure of β‐VO(HPO4).∙2H2O solved from X-ray powder diffraction,” J. Solid State Chem.JSSCBI 79, 169176.
Le Bail, A., Férey, G., Mercier, A.-M., de Kozak, A., and Samouel, M. (1990). “Structure determination of β- and γ‐BaAlF5 by X-ray and neutron powder diffraction, a model for the αβ←→γ transitions,” J. Solid State Chem.JSSCBI 89, 282291.
Le Bail, A., Fourquet, J. L., and Bentrup, U. (1992b). “τ‐AlF3, crystal structure determination from X-ray powder diffraction data. A new MX 3 corner-sharing octahedra 3D network,” J. Solid State Chem.JSSCBI 100, 151159.
Le Bail, A. and Lafontaine, M.-A. (1990). “Structure determination of NiV2O6 from X-ray powder diffraction, a rutile-ramsdellite intergrowth,” Eur. J. Solid State Inorg. Chem.EJSCE5 27, 671680.
Le Bideau, J., Bujoli, B., Jouanneaux, A., Payen, C., Palvadeau, P., and Rouxel, J. (1993). “Preparation and structure of CuII(C2H5PO3). Structural transition between its hydrated and dehydrated forms,” Inorg. Chem.INOCAJ 32, 46174620.
Lehmann, M. S., Christensen, A. N., Fjellvag, H., Feidenhans’l, R., and Nielsen, M. (1987). “Structure determination by use of pattern decomposition and the Rietveld method on synchrotron X-ray and neutron powder data; The structures of Al2Y4O9 and I2O4,” J. Appl. Crystallogr.JACGAR10.1107/S0021889887087016 20, 123129.
Lightfoot, P., Glidewell, C., and Bruce, P. G. (1992a). “Ab initio determination of molecular structures using high-resolution powder diffraction data from a laboratory X-ray source,” J. Mater. Chem.JMACEP10.1039/jm9920200361 2, 361362.
Lightfoot, P., Hriljac, J. A., Pei, S., Zheng, Y., Mitchell, A. W., Richards, D. R., Dabrowski, B., Jorgensen, J. D., and Hinks, D. G. (1991). “BaBiO2.5, a new bismuth oxide with a layered structure,” J. Solid State Chem.JSSCBI 92, 473479.
Lightfoot, P., Tremayne, M., Glidewell, C., Harris, K. D. M., and Bruce, P. G. (1993). “Investigation and rationalisation of hydrogen bonding patterns in sulfonylamino compounds and related materials: Crystal structure determination of microcrystalline solids from powder X-ray diffraction data,” J. Chem. Soc., Perkin Trans. 2JCPKBH 1993, 16251630.
Lightfoot, P., Tremayne, M., Harris, K. D. M., and Bruce, P. G. (1992b). “Determination of a molecular crystal structure by X-ray powder diffraction on a conventional laboratory instrument,” J. Chem. Soc., Chem. Commun.JCCCAT 1992, 10121016.
Louër, D. and Louër, M. (1987). “Crystal structure of Nd(OH)2NO3.H2O completely solved and refined from X-ray powder diffraction,” J. Solid State Chem.JSSCBI 68, 292299.
Louër, D., Louër, M., and Touboul, M. (1992). “Crystal structure determination of lithium diborate hydrate LiB2O3(OH)∙H2O, from X-ray powder diffraction data collected with a curved position-sensitive detector,” J. Appl. Crystallogr.JACGAR10.1107/S0021889892004801 25, 617623.
Louër, M., Plevert, J., and Louër, D. (1988). “Structure of KCaPO4.H2O from X-ray powder diffraction data,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 44, 463467.
Marinder, B.-O., Wang, P.-L., Werner, P.-E., Westdahl, M., Andresen, A. F., and Louër, D. (1987). “Powder diffraction studies of Cu2WO4,” Acta Chem. Scand., Ser. AACAPCT A41, 152157.
Masciocchi, N., Cairati, P., Ragaini, F., and Sironi, A. (1993). “Ab initio XRPD structure determination of metal carbonyl clusters, the case of [HgRu(CO)4]4,” OrganometallicsORGND7 12, 44994502.
McCusker, L. B. (1988). “The ab initio structure determination of sigma-2 (a new clathrasil phase) from synchrotron powder diffraction data,” J. Appl. Crystallogr.JACGAR 21, 305310.
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Crystallogr.JACGAR10.1107/S0021889898009856 32, 3650.
Morris, R. E., Harrison, W. T. A., Nical, J. M., Wilkinson, A. P., and Cheetham, A. K. (1992). “Determination of complex structures by combined neutron and X-Ray-powder diffraction,” Nature (London)NATUAS10.1038/359519a0 359, 519–512.
Morris, R. E., Owen, J. J., Stalick, J. K., and Cheetham, A. K. (1994). “Determination of complex structures from powder diffraction data—The crystal structure of La3Ti5Al15O37,” J. Solid State Chem.JSSCBI 111, 5257.
Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Scheraga, H., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P., and Williams, D. E. (2002). “Crystal structure prediction of small organic molecules: A second blind test,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 58, 647661.
Norby, P., Christensen, A. N., Fjellvag, H., and Nielsen, M. (1991). “The crystal structure of Cr8O21 determined from powder diffraction data; thermal transformation and magnetic properties of a chromium-chromate-tetrachromate,” J. Solid State Chem.JSSCBI10.1016/0022-4596(91)90193-L 94, 281293.
Pagola, S., Stephens, P. W., Bohle, D. S., Kosar, A. D., and Madsen, S. K. (2000). “The structure of malaria pigment beta-haematin,” Nature (London)NATUAS10.1038/35005132 404, 307310.
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr.JACGAR10.1107/S0021889881009618 14, 357361.
Pelloquin, D., Louër, M., and Louër, D. (1994). “Powder diffraction studies in the YONO3–Y2O3 system,” J. Solid State Chem.JSSCBI10.1006/jssc.1994.1284 112, 182188.
Peschar, R., Schenk, H., and Capkova, P. (1995). “Preferred-orientation correction and normalization procedure for ab initio structure determination from powder data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889894010629 28, 127140.
Peterson, V. K. (2005). “Lattice parameter measurement using Le Bail versus structural (Rietveld) refinement; A caution for complex, low symmetry systems,” Powder Diffr.PODIE2 20, 1417.
Petit, S., Coquerel, G., Perez, G., Louër, D., and Louër, M. (1993). “Ab initio crystal structure determination of dihydrated copper(II) 5-sulfonic-8-quinolinolato complex (form I) from X-ray powder diffraction data. Filiations with related copper(II) sulfoxinates,” New J. Chem.NJCHE5 17, 187192.
Petit, S., Coquerel, G., Perez, G., Louër, D., and Louër, M. (1994). “Synthesis, characterization, and ab initio structure determination from powder diffraction data of a new X’ form of anhydrous copper(II) 8-hydroxyquinolate doped with amine. Modeling of the polymorphic transformation to the stable anhydrous beta form,” Chem. Mater.CMATEX 6, 116121.
Pivan, J. Y., Achak, O., Louër, M., and Louër, D. (1994). “The novel thiogermanate [(CH3)4N]4Ge4S10 with a high cubic cell volume. Ab initio structure determination from conventional X-ray powder diffraction,” Chem. Mater.CMATEX 6, 827830.
Pizarro, J. L., Villeneuve, G., Hagenmuller, P., and Le Bail, A. (1991). “Synthesis, crystal structure, and magnetic properties of Co3(HPO4)2(OH)2 related to the mineral lazulite,” J. Solid State Chem.JSSCBI 92, 273285.
Plevert, J., Louër, M., and Louër, D. (1989). “The ab initio structure determination of Cd3(OH)5(NO3) from X-ray powder diffraction data,” J. Appl. Crystallogr.JACGAR 22, 470475.
Radaelli, P. G., Cox, D. E., Marezio, M., and Cheong, S. W. (1997). “Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3,” Phys. Rev. BPRBMDO10.1103/PhysRevB.55.3015 55, 30153023.
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR10.1107/S0021889869006558 2, 6571.
Rius, J., Sane, J., Miravitlles, C., Amigo, J. M., Reventos, M. M., and Louër, D. (1996). “Determination of crystal structures from powder diffraction data by direct methods: Extraction of integrated intensities from partially overlapping Bragg reflections,” Anales de Química 92, 223227.
Rodriguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern-matching analysis,” Abstracts of the meeting Powder Diffraction, Toulouse, France, pp. 127128.
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica BPHYBE310.1016/0921-4526(93)90108-I 192, 5569.
Roisnel, T. and Rodriguez-Carvajal, J. (2001). “WinPLOTR: A windows tool for powder diffraction pattern analysis,” Mater. Sci. ForumMSFOEP 378–381, 118123.
Scott, H. G. (1987). PROFIT—A peak-fitting program for powder diffraction profile.
Shirley, R. (2004). “Powder Indexing,” http://www.cristal.org/robin
Simmen, A., McCusker, L. B., Baerlocher, Ch., and Meier, W. M. (1991). “The structure determination and Rietveld refinement of the aluminophosphate AlPO4–18,” ZeolitesZEOLD310.1016/S0144-2449(05)80167-8 11, 654661.
Sivia, D. S. and David, W. I. F. (1994). “A Bayesian approach to extracting structure-factor amplitudes from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 50, 703714.
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder data from photographs,” J. Appl. Crystallogr.JACGAR10.1107/S0021889875009417 8, 1–7.
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr.JACGAR10.1107/S0021889898006001 32, 281289.
Subramanian, M. A., Toby, B. H., Ramirez, A. P., Marshall, W. J., Sleight, A. W., and Kwei, G. H. (1996). “Colossal magnetoresistance without Mn3+∕Mn4+ double exchange in the stoichiometric pyrochlore Tl2Mn2O7,” ScienceSCIEAS 273, 8184.
Teller, R. G., Blum, P., Kostiner, E., and Hriljac, J. A. (1992). “Determination of the structure of (VO)3(PO4)2∙9H2O by powder X-ray diffraction analysis,” J. Solid State Chem.JSSCBI 97, 1018.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr.JACGAR10.1107/S0021889887087090 20, 7983.
Toraya, H. (1986). “Whole-powder-pattern fitting without reference to a structural model: Application to X-ray powder diffraction data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889886088982 19, 440447.
Toraya, H. (1994). “Applications of whole-powder-pattern fitting technique in materials characterization,” Adv. X-Ray Anal.AXRAAA 37, 3747.
Tremayne, M., Lightfoot, P., Glidewell, C., Harris, K. D. M., Shankland, K., Gilmore, C. J., Bricogne, G., and Bruce, P. G. (1992a). “Application of the combined maximum entropy and likelihood method to the ab initio determination of an organic crystal structure from X-ray powder diffraction data,” J. Mater. Chem.JMACEP 2, 13011302.
Tremayne, M., Lightfoot, P., Mehta, M. A., Bruce, P. G., Harris, K. D. M., Shankland, K., Gilmore, C. J., and Bricogne, G. (1992b). “Ab initio structure determination of LiCF3SO3 from X-ray powder diffraction data using entropy maximisation and likelihood ranking,” J. Solid State Chem.JSSCBI 100, 191196.
Von Dreele, R. B., Stephens, P. W., Smith, G. D., and Blessing, R. H. (2000). “The first protein crystal structure determined from high-resolution X-ray powder diffraction data: A variant of T3R3 human insulin-zinc complex produced by grinding,” Acta Crystallogr., Sect. D: Biol. Crystallogr.ABCRE610.1107/S0907444900013901 56, 15491553.
Wessels, T., Baerlocher, Ch., McCusker, L. B., and Creyghton, E. J. (1999). “An ordered form of the extra-large-pore zeolite UTD-1: Synthesis and structure analysis from powder diffraction data,” J. Am. Chem. Soc.JACSAT 121, 62426247.
Wiles, D. B. and Young, R. A. (1981). “A new computer program for Rietveld analysis of X-ray powder diffraction patterns,” J. Appl. Crystallogr.JACGAR10.1107/S0021889881008996 14, 149151.
Will, G. (1988). “Crystal structure analysis and refinement using integrated intensities from accurate profile fits,” Aust. J. Phys.AUJPAS 41, 283296.
Will, G. (1989). “Crystal structure analysis from powder diffraction data,” Z. Kristallogr.ZEKRDZ 188, 169186.
Will, G., Masciocchi, N., Parrish, W., and Hart, M. (1987). “Refinement of simple crystal structures from synchrotron radiation powder diffraction data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889887086412 20, 394401.
Will, G., Parrish, W., and Huang, T. C. (1983). “Crystal-structure refinement by profile fitting and least-squares analysis of powder diffractometer data,” J. Appl. Crystallogr.JACGAR 16, 611622.
Williams, J. H., Cockcroft, J. K., and Fitch, A. N. (1992). “Structure of the lowest temperature phase of the solid benzene-hexafluorobenzene adduct,” Angew. Chem., Int. Ed. Engl.ACIEAY10.1002/anie.199216551 31, 16551657.
Wright, J. P. (2004). “Extraction and use of correlated integrated intensities with powder diffraction data,” Z. Kristallogr.ZEKRDZ 219, 791802.
Young, R. A. (1993). The Rietveld Method (Oxford University Press, New York).
Young, R. A. and Desai, P. (1989). “Crystallite size and microstrain indicators in Rietveld refinement,” Ark. Nauki o Materialach 10, 7190.
Zah-Letho, J. J., Jouanneaux, A., Fitch, A. N., Verbaere, A., and Tournoux, M. (1992). “Nb3(NbO)2(PO4)7 a novel niobium V oxophosphate, synthesis and crystal structure determination from high resolution X-ray powder diffraction,” Eur. J. Solid State Inorg. Chem.EJSCE5 29, 13091320.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed