Skip to main content Accessibility help
×
Home
Hostname: page-component-59df476f6b-pw78b Total loading time: 0.234 Render date: 2021-05-18T21:38:28.221Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A DISCRETE-EVENT SIMULATION MODEL FOR DRIVER PERFORMANCE ASSESSMENT: APPLICATION TO AUTONOMOUS VEHICLE COCKPIT DESIGN OPTIMIZATION

Published online by Cambridge University Press:  11 June 2020

I. Iuskevich
Affiliation:
CentraleSupélec, France IRT SystemX, France
A. M. Hein
Affiliation:
CentraleSupélec, France
K. Amokrane-Ferka
Affiliation:
IRT SystemX, France
A. Doufene
Affiliation:
IRT SystemX, France
M. Jankovic
Affiliation:
CentraleSupélec, France
Corresponding

Abstract

The latest advances in the design of vehicles with the adaptive level of automation pose new challenges in the vehicle-driver interaction. Safety requirements underline the need to explore optimal cockpit architectures with regard to driver cognitive and perceptual workload, eyes-off-the-road time and situation awareness. We propose to integrate existing task analysis approaches into system architecture evaluation for the early-stage design optimization. We built the discrete-event simulation tool and applied it within the multi-sensory (sight, sound, touch) cockpit design industrial project.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Aldrich, T.B., Szabo, S.M. and Bierbaum, C.R. (1989), “The Development and Application of Models to Predict Operator Workload During System Design”, In: McMillan, G.R., Beevis, D., Salas, E., Strub, M.H., Sutton, R. and Van Breda, L. (Eds.), Applications of Human Performance Models to System Design, Springer US, Boston, MA, pp. 6580. https://doi.org/10.1007/978-1-4757-9244-7_5CrossRefGoogle Scholar
Bellet, T. et al. (2011), “Human Driver Modelling and Simulation into a Virtual Road Environment”, In: Cacciabue, P.C., Hjälmdahl, M., Luedtke, A. and Riccioli, C. (Eds.), Human Modelling in Assisted Transportation, Springer Milan, Milano, pp. 251262. https://doi.org/10.1007/978-88-470-1821-1_27CrossRefGoogle Scholar
Boy, G.A. (1998), “Cognitive function analysis for human-centered automation of safety-critical systems”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems – CHI ‘98, presented at the the SIGCHI conference, ACM Press, Los Angeles, California, United States, pp. 265272. https://doi.org/10.1145/274644.274682CrossRefGoogle Scholar
Feuerstack, S., Lüdtke, A. and Osterloh, J.-P. (2007), “A Tool for Easing the Cognitive Analysis of Design Prototypes of Aircraft Cockpit Instruments: The Human Efficiency Evaluator”, Proceedings of the European Conference on Cognitive Ergonomics 2015, ACM, New York, NY, USA, pp. 22:122:8. https://doi.org/10.1145/2788412.2788434CrossRefGoogle Scholar
Flemisch, F.O. et al. (2014), “Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire”, Ergonomics, Vol. 57 No. 3, pp. 343360. https://doi.org/10.1080/00140139.2013.869355CrossRefGoogle ScholarPubMed
Green, P.A. (2017), “Motor Vehicle Driver Interfaces”, In: The Wiley Handbook of Human Computer Interaction, John Wiley & Sons, Ltd, pp. 843888. https://doi.org/10.1002/9781118976005.ch40CrossRefGoogle Scholar
Kontogiannis, T. (2005), “Integration of task networks and cognitive user models using coloured Petri nets and its application to job design for safety and productivity”, Cognition, Technology & Work, Vol. 7 No. 4, pp. 241261. https://doi.org/10.1007/s10111-005-0010-zCrossRefGoogle Scholar
Korosec, K. (2019), “Waymo to customers: ‘Completely driverless Waymo cars are on the way’”, TechCrunch, 10 October, Available at: http://social.techcrunch.com/2019/10/09/waymo-to-customers-completely-driverless-waymo-cars-are-on-the-way/ (accessed 15.11.2019).Google Scholar
Laughery, R. et al. (2000), “Task Network Modeling and the Micro Saint Family of Tools”, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 44 No. 6, pp. 721724. https://doi.org/10.1177/154193120004400649CrossRefGoogle Scholar
North, R.A. and Riley, V.A. (1989), “W/INDEX: A Predictive Model of Operator Workload”, In: McMillan, G.R., Beevis, D., Salas, E., Strub, M.H., Sutton, R. and Van Breda, L. (Eds.), Applications of Human Performance Models to System Design, Springer US, Boston, MA, pp. 8189. https://doi.org/10.1007/978-1-4757-9244-7_6CrossRefGoogle Scholar
Parasuraman, R. and Wickens, C.D. (2008), “Humans: Still Vital After All These Years of Automation”, Human Factors, Vol. 50 No. 3, pp. 511520. https://doi.org/10.1007/978-88-470-1821-1_27CrossRefGoogle ScholarPubMed
Pettitt, M., Burnett, G.E. and Stevens, A. (2007), “An extended keystroke level model (KLM) for predicting the visual demand of in-vehicle information systems”, CHI, available at: https://doi.org/10.1145/1240624.1240852CrossRefGoogle Scholar
Scerbo, M. (2008), “Adaptive automation”, In: Parasuraman, R. and Rizzo, M. (Eds.), Neuroergonomics: The Brain at Work, Vol. 3, Oxford University Press, p. 239.Google Scholar
Wang, J.-S., Knipling, R.R. and Goodman, M.J. (1996), “The role of driver inattention in crashes: New statistics from the 1995 Crashworthiness Data System”, 40th Annual Proceedings of the Association for the Advancement of Automotive Medicine, Vol. 377, p. 392.Google Scholar
Wickens, C.D. (2002), “Multiple resources and performance prediction”, Theoretical Issues in Ergonomics Science, Vol. 3 No. 2, pp. 159177. https://doi.org/10.1080/14639220210123806CrossRefGoogle Scholar
Wittmann, M. et al. (2006), “Effects of display position of a visual in-vehicle task on simulated driving”, Applied Ergonomics, Vol. 37 No. 2, pp. 187199. https://doi.org/10.1016/j.apergo.2005.06.002CrossRefGoogle ScholarPubMed
Wortelen, B., Unni, A., Rieger, J.W. and Lüdtke, A. (2016), “Towards the integration and evaluation of online workload measures in a cognitive architecture”, 2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 1116. https://doi.org/10.1109/CogInfoCom.2016.7804516CrossRefGoogle Scholar
You have Access
Open access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A DISCRETE-EVENT SIMULATION MODEL FOR DRIVER PERFORMANCE ASSESSMENT: APPLICATION TO AUTONOMOUS VEHICLE COCKPIT DESIGN OPTIMIZATION
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A DISCRETE-EVENT SIMULATION MODEL FOR DRIVER PERFORMANCE ASSESSMENT: APPLICATION TO AUTONOMOUS VEHICLE COCKPIT DESIGN OPTIMIZATION
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A DISCRETE-EVENT SIMULATION MODEL FOR DRIVER PERFORMANCE ASSESSMENT: APPLICATION TO AUTONOMOUS VEHICLE COCKPIT DESIGN OPTIMIZATION
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *