Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T02:38:09.435Z Has data issue: false hasContentIssue false

EXTENDED APPROACH TO OPTIMIZE MODULAR PRODUCTS THROUGH THE POTENTIALS OF ADDITIVE MANUFACTURING

Published online by Cambridge University Press:  11 June 2020

K.-E. W. H. Steffan*
Affiliation:
Technische Universität Darmstadt, Germany
M. Fett
Affiliation:
Technische Universität Darmstadt, Germany
E. Kirchner
Affiliation:
Technische Universität Darmstadt, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In modular products conflicting objectives may occur. This leads to characteristics as component-dependent oversizing and undersizing as well as increased complexity of the interfaces. These conflicts can be resolved using the potentials of AM processes. For the best use possible, the potentials are systematically considered in the early design phases as part of an extended procedure. The extended procedure improves the benefit-effort ratio of modular respectively individual products and a further optimization of the product architecture and consideration of synergy effects is achieved.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Arnoscht, J. (2011), Beherrschung von Komplexität bei der Gestaltung von Baukastensystemen, Apprimus-Verlag, Aachen.Google Scholar
Birkhofer, H. (1980), Analyse und Synthese der Funktionen technischer Produkte [Dr.-Ing. Thesis], Fakultät für Maschinenbau und Elektrotechnik der Technischen Universität Carolo- Wilhelmina zu Braunschweig.Google Scholar
Birkhofer, H. et al. (2018), “Umweltgerechtes Konstruieren”, In: Rieg, F. and Steinhilper, R. (Eds.), Handbuch Konstruktion, Carl Hanser Verlag, München, pp. 601622. http://dx.doi.org/10.3139/9783446456198Google Scholar
Deradjat, D. and Minshall, T. (2015), “Implementation of additive manufacturing technologies for mass customisation”, IAMOT 2015 Conference Proceedings, Cape Town, South Africa, 8-11 June, 2015, IAMOT, pp. 20792094.Google Scholar
Deradjat, D. and Minshall, T. (2016), “Implementation of Rapid Manufacturing for Mass Customisation”, Journal of Manufacturing Technology Management, Vol. 28, pp. 95121. https://doi.org/10.17863/CAM.4528CrossRefGoogle Scholar
Deradjat, D. and Minshall, T. (2018), “Decision trees for implementing rapid manufacturing for mass customisation”, CIRP Journal of Manufacturing Science and Technology, Vol. 23, pp. 156171. https://doi.org/10.1016/j.cirpj.2017.12.003CrossRefGoogle Scholar
Feldhusen, J. and Grote, K. (2007), Pahl/ Beitz Konstruktionslehre, Springer, Berlin.Google Scholar
Feldhusen, J. and Grote, K (2013), “Grundsätzliche Arbeitsschritte beim Entwickeln und Konstruieren”, In: Feldhusen, J. and Grote, K. (Eds.), Pahl/Beitz Konstruktionslehre, Springer, Berlin, pp. 283290. http://doi.org/10.1007/978-3-642-29569-0CrossRefGoogle Scholar
Gao, W. et al. (2015), “The status, challenges, and future of additive manufacturing in engineering”, Computer-Aided Design, Vol. 69, pp. 6589. https://doi.org/10.1016/j.cad.2015.04.001CrossRefGoogle Scholar
Göpfert, J. (1998), Modulare Produktentwicklung: zur gemeinsamen Gestaltung von Technik und Organisation, Deutscher Universitätsverlag, Wiesbaden.CrossRefGoogle Scholar
Göpfert, J. and Steinbrecher, M. (2000), “Modulare Produktentwicklung leistet mehr”, Harvard Business Manager, Vol. 3, pp. 2031.Google Scholar
Hague, R., Campbell, I. and Dickens, P. (2003), “Implications on design of rapid manufacturing”, Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, Vol. 217 No. 1, pp. 2530. https://doi.org/10.1243/095440603762554587CrossRefGoogle Scholar
Kipp, T., Blees, C. and Krause, D. (2010), “Anwendung einer integrierten Methode zur Entwicklung modularer Produktfamilien”, DFX 2010: Proceedings of the 21st Symposium on Design for X, Buchholz/Hamburg, Germany, September 23-24, 2010, TuTech Innovation GmbH, Hamburg, pp. 157168.Google Scholar
Ko, H., Moon, S. and Hwang, J. (2015a), “Design for additive manufacturing in customized products”, International Journal of Precision Engineering and Manufacturing, Vol. 16 No. 11, pp. 23692375. https://doi.org/10.1007/s12541-015-0305-9CrossRefGoogle Scholar
Ko, H., Moon, S. and Otto, K. (2015b), “Design knowledge representation to support personalised additive manufacturing”, Virtual and Physical Prototyping, Vol. 10 No. 4, pp. 217226. https://doi.org/10.1080/17452759.2015.1107942CrossRefGoogle Scholar
Krause, D. and Gebhardt, N. (2018), Methodische Entwicklung modularer Produktfamilien: Hohe Produktvielfalt beherrschbar entwickeln, Springer, Berlin. http://dx.doi.org/10.1007/978-3-662-53040-5CrossRefGoogle Scholar
Lei, N., Moon, S. and Rosen, D. (2015), “Redefining Product Family Design for Additive Manufacturing”, 20th International Conference on Engineering Design, Milano, Italy, 27-30 July, 2015, Nanyang Technological University, Singapore, pp. 267278. https://doi.org/10.1007/s12541-015-0305-9CrossRefGoogle Scholar
Lissautzki, M. (2008), Kundenwertorientierte Unternehmenssteuerung: Voraussetzungen, Aufgaben, Werttreiberanalysen, Deutscher Universitäts-Verlag | GWV Fachverlage GmbH, Wiesbaden. http://doi.org/10.1007/978-3-8350-5473-8Google Scholar
Oh, Y., Zhoe, C. and Behdad, S. (2018), “Production Planning for Mass Customization in Additive Manufacturing: Build Orientation Determination, 2D Packing and Scheduling”, Proceedings of the ASME 2018 International Design Engineering Technical Conferences, Quebec, Canada, August 26-28, 2018, ASME. https://doi.org/10.1115/DETC2018-85639CrossRefGoogle Scholar
Pahl, G. et al. (2007), Engineering Design, Springer, London. https://doi.org/10.1007/978-1-84628-319-2CrossRefGoogle Scholar
Pereira, T., Kennedy, J. and Potgieter, J. (2019), “A comparison of traditional manufacturing vs additive manufacturing, the best method for the job”, Procedia Manufacturing, Vol. 30, pp. 1118. https://doi.org/10.1016/j.promfg.2019.02.003CrossRefGoogle Scholar
Petrovic, V. et al. (2011), “Additive layered manufacturing: sectors of industrial application shown through case studies”, International Journal of Production Research, Vol. 39 No. 4, pp. 10611079. https://doi.org/10.1080/00207540903479786CrossRefGoogle Scholar
Ponn, J. and Lindemann, U. (2011), Konzeptentwicklung und Gestaltung technischer Produkte, Springer, Berlin. https://doi.org/10.1007/978-3-642-20580-4CrossRefGoogle Scholar
Reeves, P., Tuck, C. and Hague, R. (2011), “Additive Manufacturing for Mass Customization”, In: Fogliatto, F. and da Silveira, G. (Eds.), Mass Customization, Springer, London, pp. 275290. https://doi.org/10.1007/978-1-84996-489-0CrossRefGoogle Scholar
Schuberth (2019), C4-Basic Manual. [online] Schuberth GmbH. Available at: www.schuberth.com/fileadmin/content/documents/Manuals_MOT/MANUAL_C4_Basic_DE.pdf (accessed 05.11.2019)Google Scholar
Shoei (2019), X-Fourteen-X-Spirit III Manual. [online] Shoei co. ltd. Available at: www.shoei-europe.com/upload/manuals/X-Fourteen-X-Spirit_III_100P-small.pdf (accessed 05.11.2019)Google Scholar
Spallek, J. and Krause, D. (2016), “Process Types of Customisation and Personalisation in Design for Additive Manufacturing Applied to Vascular Models”, Procedia CIRP, Vol. 50, pp. 281286. https://doi.org/10.1016/j.procir.2016.05.022CrossRefGoogle Scholar
Spallek, J., Sankowski, O. and Krause, D. (2016), “Influences of Additive Manufacturing on Design Processes for Customised Products”, 14th International Design Conference, Dubrovnik, Croatia, May 16-19, 2016, The Design Society, Glasgow, pp. 513522. https://doi.org/10.13140/RG.2.1.1112.4080CrossRefGoogle Scholar
VDI (2015), VDI 3405, Blatt 3: Additive Fertigungsverfahren, Konstruktionsempfehlungen für die Bauteilfertigung mit Laser-Sintern und Laser-Strahlschmelzen, Verein Deutscher Ingineure e.V., Düsseldorf.Google Scholar
VDI (2018), VDI 2221, Blatt 1: Entwicklung technischer Produkte und Sytseme – Modell der Produktentwicklung, Verein Deutscher Ingineure e.V., Düsseldorf.Google Scholar
Westhäuser, B. (2014), Methodik zur Entwicklung modularer Produkte und ihre Potentiale in Bezug auf den Einsatz im Robust Design [Master Thesis], TU Darmstadt.Google Scholar
Yang, S. and Zhao, Y. (2015), “Additive manufacturing-enabled design theory and methodology: a critical review”, The International Journal of Advanced Manufacturing Technology, Vol. 80 No. 1, pp. 327342. https://doi.org/10.1007/s00170-015-6994-5CrossRefGoogle Scholar