Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T06:01:21.668Z Has data issue: false hasContentIssue false

DEVELOPMENT METHOD FOR REQUIREMENT COLLECTIVES OF HYDROGEN REFUELLING STATIONS

Published online by Cambridge University Press:  27 July 2021

David Schneider*
Affiliation:
Technsiche Universität Braunschweig, Institute for Engineering Design
Tobias Huth
Affiliation:
Technsiche Universität Braunschweig, Institute for Engineering Design
Bastian Nolte
Affiliation:
Technsiche Universität Braunschweig, Institute for Engineering Design
Thomas Vietor
Affiliation:
Technsiche Universität Braunschweig, Institute for Engineering Design
Steffen Heinke
Affiliation:
Technsiche Universität Braunschweig, Institut für Thermodynamik
Wilhelm Tegethoff
Affiliation:
Technsiche Universität Braunschweig, Institut für Thermodynamik
Jürgen Köhler
Affiliation:
Technsiche Universität Braunschweig, Institut für Thermodynamik
Ulf Kühne
Affiliation:
Technsiche Universität Braunschweig, Institute of Internal Combustion Engines
Peter Eilts
Affiliation:
Technsiche Universität Braunschweig, Institute of Internal Combustion Engines
Lisa Busche
Affiliation:
TLK-Thermo GmbH, Braunschwei
*
Schneider, David, Technische Universität Braunschweig, Institute for Engineering Design, Germany, da.schneider@tu-braunschweig.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In addition to the development and research of battery-driven vehicles, a high research effort in the field of hydrogen technology can currently be observed. Various research and strategy initiatives relating to hydrogen are being initiated and pursued with considerable commitment worldwide. A significant expansion of the hydrogen filling station network is also being sought in Germany. In the course of designing a hydrogen refuelling station, the paradigms of thermal management must be taken into account in addition to a large number of different environmental and life phase-induced influencing factors. The interactions between influencing factors, requirements and the system architecture result in a multitude of possible refuelling station concepts, which can hardly be surveyed or managed from an organisational point of view. This publication introduces a method for the development of descriptive requirement collectives, which is applied to hydrogen refuelling stations in the framework of THEWA, but can also be adapted for other technical systems. The requirement collective is the first core element of the THEWA tool chain that enables a requirement-oriented and fast design of hydrogen refuelling stations.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Ahrens, G. Das Erfassen und Handhaben von Produktanforderungen [Online], Technische Universität Berlin, Fakultät V - Verkehrs- und Maschinensysteme. Available at https://depositonce.tu-berlin.de/handle/11303/435 (Accessed 8 March 2021).Google Scholar
Akao, Y. (2004) Quality function deployment: Integrating customer requirements into product design, Cambridge, Mass., Productivity Press.Google Scholar
Duffy, M. and Sandor, D. (2008) ‘4.4.1 A System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy’, INCOSE International Symposium, Vol. 18, no. 1, pp. 507521.CrossRefGoogle Scholar
Ehrlenspiel, K. (2009) Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 4th edn, München, Wien, Hanser.CrossRefGoogle Scholar
H2 Mobility Deutschland GmbH (2020) H2 live [Online]. Available at https://h2.live/en.Google Scholar
HA Hessen Agentur GmbH (2012) Wasserstoff-Tankstellen - Ein Leitfaden für Anwender und Entscheider, 3rd edn, Kassel.Google Scholar
Huth, T. and Vietor, T. (2020) ‘Systems Engineering in der Produktentwicklung: Verständnis, Theorie und Praxis aus ingenieurswissenschaftlicher Sicht’, Gruppe. Interaktion. Organisation. Zeitschrift für Angewandte Organisationspsychologie (GIO), vol. 51, no. 1, pp. 125130.CrossRefGoogle Scholar
Lindemann, U. (2016) Handbuch Produktentwicklung, München, Hanser.CrossRefGoogle Scholar
Ministries of Economy and Transport of the North German Coastal States (2019) Hydrogen strategy for north germany [Online]. Available at www.hamburg.de/contentblob/13874168/e484c76e44486905abd9220bbdd64a8f/data/hydrogen-strategy-for-north-germany.pdf.Google Scholar
Nehuis, F. (2014) Methodische Unterstützung bei der Ermittlung von Anforderungen in der Produktentwicklung, München, Verl. Dr. Hut.Google Scholar
Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. (2007) Engineering Design, London, Springer London.CrossRefGoogle Scholar
Prinz, A., Nehuis, F., Vietor, T. and Stechert, C. (2013) ‘The Effects of Regional Specific Requirements on the Development of Vehicle Concepts’, in Lienkamp, M. (ed) Conference on Future Automotive Technology, Wiesbaden, Springer Fachmedien Wiesbaden, pp. 167190.CrossRefGoogle Scholar
Reuß, M., Grube, T., Robinius, M., Preuster, P., Wasserscheid, P. and Stolten, D. (2017) ‘Seasonal storage and alternative carriers: A flexible hydrogen supply chain model’, Applied Energy, vol. 200, pp. 290302.CrossRefGoogle Scholar
Roth, K. (2001) Konstruieren mit Konstruktionskatalogen, Berlin, Heidelberg, Springer Berlin Heidelberg.CrossRefGoogle Scholar
Saatweber, J. (2011) Kundenorientierung durch Quality Function Deployment: Produkte und Dienstleistungen mit QFD systematisch entwickeln, 3rd edn, Düsseldorf, Symposion.Google Scholar
Stolten, D. and Emonts, B. (2016) Hydrogen Science and Engineering, Berlin, Wiley-VCH Verlag GmbH.Google Scholar
Vajna, S., ed. (2020) Integrated Design Engineering, Cham, Springer International Publishing.CrossRefGoogle Scholar
Weilkiens, T., Lamm, J. G., Roth, S. and Walker, M. (2016) Model-based system architecture, Hoboken, New Jersey, Wiley.Google Scholar