Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-15T09:34:38.516Z Has data issue: false hasContentIssue false

Perception-centric design considerations for low-cost haptic emulation in prototypes

Published online by Cambridge University Press:  16 May 2024

Mike Miroslav Wharton
Affiliation:
University of Bristol, United Kingdom
Christopher Michael Jason Cox*
Affiliation:
University of Bristol, United Kingdom
James Gopsill
Affiliation:
University of Bristol, United Kingdom
Aman Kukreja
Affiliation:
University of Bristol, United Kingdom
Chris Snider
Affiliation:
University of Bristol, United Kingdom

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

User-testing is crucial in modern product design. The perception-centric design philosophy aims to cut costs and improve responses to low-cost prototypes by including aspects like thermal properties, texture, weight, sound, and haptic feedback. This paper introduces a set of considerations for integrating low-cost vibrotactile haptics into prototypes. Derived using an action-based research process, it addresses product characterisation, actuation, control, and integration. Multi-sensory prototypes in early-stage design could be vital for the sustainable prototyping of the future.

Type
Design Methods and Tools
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Adilkhanov, A., Rubagotti, M., Kappassov, Z., 2022. Haptic Devices: Wearability-Based Taxonomy and Literature Review. IEEE Access 10, 9192391947. https://doi.org/10.1109/ACCESS.2022.3202986CrossRefGoogle Scholar
Audacity ®, 2023. . Audacity ®. URL https://www.audacityteam.org (accessed 7.27.23).Google Scholar
Bernard, C., Monnoyer, J., Wiertlewski, M., Ystad, S., 2022. Rhythm perception is shared between audio and haptics. Sci. Rep. 12, 4188. https://doi.org/10.1038/s41598-022-08152-wCrossRefGoogle ScholarPubMed
Brydon-Miller, M., Greenwood, D., Maguire, P., 2003. Why Action Research? Action Res. 1, 928. https://doi.org/10.1177/14767503030011002CrossRefGoogle Scholar
Cox, C., Hicks, B., Gopsill, J., 2022. Improving Mixed-Reality Prototyping through a Classification and Characterisation of Fidelity. Proc. Des. Soc. 2, 353362. https://doi.org/10.1017/pds.2022.37CrossRefGoogle Scholar
Draper, J.V., 1994. Teleoperator hand controllers: a contextual human factors assessment.CrossRefGoogle Scholar
ESP32, 2023. The Internet of Things with ESP32 [WWW Document]. URL http://esp32.net/ (accessed 8.18.23).Google Scholar
Felton, H., Yon, J., Hicks, B., 2020. Looks like but does it feel like? Investigating the influence of mass properties on user perceptions of rapid prototypes. Proc. Des. Soc. Des. Conf. 1, 14251434. https://doi.org/10.1017/dsd.2020.111Google Scholar
Poyraz, G. G., Tamer, Ö., 2019. Different Haptic Senses with Multiple Vibration Motors, in: 2019 11th International Conference on Electrical and Electronics Engineering (ELECO). Presented at the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), pp. 870874. https://doi.org/10.23919/ELECO47770.2019.8990480CrossRefGoogle Scholar
Gibson, J.J. (James J., 1904-1979., 1968. The senses considered as perceptual systems. Allen & Unwin, London.Google Scholar
Grunwald, M., 2008. Human Haptic Perception: Basics and Applications, Human Haptic Perception: Basics and Applications. https://doi.org/10.1007/978-3-7643-7612-3CrossRefGoogle Scholar
Helbig, H.B., Ernst, M.O., 2008. Haptic perception in interaction with other senses, in: Grunwald, M. (Ed.), Human Haptic Perception: Basics and Applications. Birkhäuser, Basel, pp. 235249. https://doi.org/10.1007/978-3-7643-7612-3_18CrossRefGoogle Scholar
Huang, Y., Yao, K., Li, J., Li, D., Jia, H., Liu, Y., Yiu, C., Park, W., Yu, X., 2022. Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Mater. TODAY Phys. 22. https://doi.org/10.1016/j.mtphys.2021.100602Google Scholar
Fund, International Monetary, 2023. World Economic Outlook database.Google Scholar
Kent, L., Snider, C., Gopsill, J., Hicks, B., 2021. Mixed reality in design prototyping: A systematic review. Des. Stud. 77, 101046. https://doi.org/10.1016/j.destud.2021.101046CrossRefGoogle Scholar
Kern, T.A., Hatzfeld, C., Abbasimoshaei, A. (Eds.), 2023. Engineering Haptic Devices, Springer Series on Touch and Haptic Systems. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-031-04536-3Google Scholar
Lederman, S., Klatzky, R., 2009. Haptic perception: A tutorial. Atten. Percept. Psychophys. 71, 14391459. https://doi.org/10.3758/APP.71.7.1439CrossRefGoogle ScholarPubMed
Maguire, M., 2001. Methods to support human-centred design. Int. J. Hum.-Comput. Stud. 55, 587634. https://doi.org/10.1006/ijhc.2001.0503CrossRefGoogle Scholar
Mathias, D., Hicks, B., Snider, C., 2019. Hybrid Prototyping: Pure Theory or a Practical Solution to Accelerating Prototyping Tasks? Proc. Des. Soc. Int. Conf. Eng. Des. 1, 759768. https://doi.org/10.1017/dsi.2019.80CrossRefGoogle Scholar
Mazursky, A., Teng, S.-Y., Nith, R., Lopes, P., 2021. MagnetIO: Passive yet interactive soft haptic patches anywhere. Presented at the Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 115.CrossRefGoogle Scholar
Overtoom, E., Horeman, T., Jansen, F., Dankelman, J., Schreuder, H., 2019. Haptic Feedback, Force Feedback, and Force-Sensing in Simulation Training for Laparoscopy: A Systematic Overview. J. Surg. Educ. 76, 242261. https://doi.org/10.1016/j.jsurg.2018.06.008CrossRefGoogle ScholarPubMed
Pahl, G. (Gerhard), Beitz, Wolfgang, Wallace, K. (Professor), Beitz, W., Wallace, K., Design Council., 1984. Engineering design. Design Council, London.Google Scholar
Stone, R., 2001. Haptic feedback: A brief history from telepresence to virtual reality, in: Brewster, S., MurraySmith, R. (Eds.), Haptic Human-Computer Interaction, Proceedings. pp. 116.Google Scholar
Sundaram, S., Kellnhofer, P., Li, Y., Zhu, J., Torralba, A., Matusik, W., 2019. Learning the signatures of the human grasp using a scalable tactile glove. NATURE 569, 698. https://doi.org/10.1038/s41586-019-1234-zCrossRefGoogle ScholarPubMed
Texas Instruments, 2023. DRV2605L [WWW Document]. URL https://www.ti.com/product/DRV2605L (accessed 8.1.23).Google Scholar
UNESCO, 2020. Global Investments in R&D. Fact Sheet No 59 FS/2020/SCI/59.Google Scholar
Vybronics, 2019. LRA Coin Vibration Motor - VG0832022D. Vybronics. URL https://www.vybronics.com/coin-vibration-motors/lra/v-g0832022d (accessed 8.11.23).Google Scholar
Withana, A., Groeger, D., Steimle, J., 2018. Tacttoo: A Thin and Feel-Through Tattoo for On-Skin Tactile Output, in: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. Presented at the UIST ’18: The 31st Annual ACM Symposium on User Interface Software and Technology, ACM, Berlin Germany, pp. 365378. https://doi.org/10.1145/3242587.3242645Google Scholar
Yang, T., Xie, D., Li, Z., Zhu, H., 2017. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Mater. Sci. Eng. R-Rep. 115, 137. https://doi.org/10.1016/j.mser.2017.02.001CrossRefGoogle Scholar
Yantis, Steven., 2014. Sensation and perception. Worth Publishers, New York, NY.Google Scholar
Yu, X., Xie, Z., Yu, Y., Lee, J., Vazquez-Guardado, A., Luan, H., Ruben, J., Ning, X., Akhtar, A., Li, D., Ji, B., Liu, Y., Sun, R., Cao, J., Huo, Q., Zhong, Y., Lee, C., Kim, S., Gutruf, P., Zhang, C., Xue, Y., Guo, Q., Chempakasseril, A., Tian, P., Lu, W., Jeong, J., Yu, Y., Cornman, J., Tan, C., Kirn, B., Lee, K., Feng, X., Huang, Y., Rogers, J., 2019. Skin-integrated wireless haptic interfaces for virtual and augmented reality. NATURE 575, 473-+. https://doi.org/10.1038/s41586-019-1687-0CrossRefGoogle ScholarPubMed