Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-15T01:09:23.840Z Has data issue: false hasContentIssue false

Visualizing and analysing data-driven shift from decentralized to centralized automotive E/E architectures

Published online by Cambridge University Press:  16 May 2024

Tejas Pravin Phadnis*
Affiliation:
Technische Universität Braunschweig, Germany Volkswagen Aktiengesellschaft, Germany
Nils Feyerabend
Affiliation:
Volkswagen Aktiengesellschaft, Germany
Joachim Axmann
Affiliation:
Technische Universität Braunschweig, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Decentralized E/E architectures (EEAs) are facing challenges and bottlenecks in implementing new features and technologies. The shift towards centralized EEAs has many challenges and needs to be handled pragmatically by considering concurrency with the existing EEAs. To address the challenges of architectural shift, the paper showcases the quantitative comparison of EEAs and visualizes the flow of shifting sub-function and hardware blocks using the Sankey diagram. The observations from the diagram as a result will support OEMs to analyse and take decisions on the shift while developing EEAs.

Type
Design Information and Knowledge
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Apostu, S., Burkacky, O., Deichmann, J. and Doll, G. (2019), “Automotive Software and electrical/electronic architecture: Implications for oems”, McKinsey & Company, McKinsey & Company, available at: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/automotive-software-and-electrical-electronic-architecture-implications-for-oems (accessed 13 November 2023).Google Scholar
Bandur, V., Selim, G., Pantelic, V. and Lawford, M. (2021), “Making the case for centralized automotive E/E Architectures”, IEEE Transactions on Vehicular Technology, Vol. 70, No. 2, pp. 12301245. https://doi.org/10.1109/tvt.2021.3054934CrossRefGoogle Scholar
Benckendorff, T., Lapp, A., Oexner, T. and Thiel, T. (2019) ‘Comparing current and future E/E architecture trends of commercial vehicles and passenger cars’, Proceedings of the 19. Internationales Stuttgarter Symposium; Stuttgart, Germany, May 25, 2019; Springer Vieweg, Wiesbaden, pp. 1190–1200. https://doi.org/10.1007/978-3-658-25939-6_95CrossRefGoogle Scholar
Bucher, H., Reichmann, C. and Becker, J. (2017), “An integrated approach enabling cross-domain simulation of model-based E/E-architectures”, Proceedings of the WCX™ 17: SAE World Congress Experience, United States, March 28, 2017, SAE Technical Paper Series. https://doi.org/10.4271/2017-01-0006CrossRefGoogle Scholar
Eder, J. D. (2022). Automatic Exploration of Automotive E/E Architectures [PhD Thesis], Technische Universität München. https://mediatum.ub.tum.de/?id=1638880Google Scholar
Ghosal, A., Giusto, P., Sinha, P., Osella, M., D'Ambrosio, J. and Zeng, H. (2010), “Metrics for evaluating electronic control system architecture alternatives”, SAE Technical Paper Series, vol. 148, pp. 89-98. http://doi.org/10.4271/2010-01-0453CrossRefGoogle Scholar
IEEE (2000), IEEE Std 1471-2000: IEEE Recommended Practice for Architectural Description of Software-Intensive Systems, in IEEE Std 1471-2000. https://doi.org/10.1109/ieeestd.2000.91944CrossRefGoogle Scholar
Jiang, S. (2019), “Vehicle E/E architecture and its adaptation to new technical trends”, Proceeding of the WCX SAE World Congress Experience, United States, April 02, 2019, SAE Technical Paper Series, pp. 110. https://doi.org/10.4271/2019-01-0862CrossRefGoogle Scholar
Kanajan, S., Pinello, C., Zeng, Haibo and Sangiovanni-Vincentelli, A. (2006), “Exploring trade-off's between centralized versus decentralized automotive architectures using a virtual integration environment”, Proceedings of the Design Automation & Test in Europe Conference, Munich, Germany, March 6-10, 2006, IEEE CS Press, pp. 548-553. https://doi.org/10.1109/date.2006.243895Google Scholar
Lisova, E., Broux, R., Denil, J., Bucaioni, A. and Mubeen, S. (2022), “Communication patterns for evaluating vehicular E/E architectures”, Proceedings of the 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Maldives, Maldives, November 16-18, 2022, IEEE. http://doi.org/10.1109/iceccme55909.2022.9987747CrossRefGoogle Scholar
Mehboob, B., Chong, C. Y., Lee, S. P., & Lim, J. M. Y. (2021). “Reusability affecting factors and software metrics for reusability: A systematic literature review”. Journal of Software: Practice and Experience, Vol. 51, No. 3, pp. 1416-1458. https://doi.org/10.1002/spe.2961Google Scholar
Navale, V.M., Williams, K., Lagospiris, A., Schaffert, M. and Schweiker, M.-A. (2015), “(r)evolution of E/E architectures”, SAE International Journal of Passenger Cars - Electronic and Electrical Systems, Vol. 8 No. 2, pp. 282288. https://doi.org/10.4271/2015-01-0196CrossRefGoogle Scholar
Navet, N. and Simonot-Lion, F. (2017), Automotive Embedded Systems Handbook, CRC Press. https://doi.org/10.1201/9780849380273-4CrossRefGoogle Scholar
Otten, S., Glock, T., Hohl, C.P. and Sax, E. (2019), “Model-based variant management in Automotive Systems Engineering”, Proceedings of the 2019 International Symposium on Systems Engineering (ISSE), Edinburgh, UK, October 01-03, 2019, IEEE, pp. 1-7. http://doi.org/10.1109/isse46696.2019.8984593CrossRefGoogle Scholar
Papamichail, M. D., Diamantopoulos, T., & Symeonidis, A. L. (2019). “Measuring the reusability of software components using static analysis metrics and reuse rate information”. Journal of Systems and Software, Vol. 158, p.110423. https://doi.org/10.1016/j.jss.2019.110423CrossRefGoogle Scholar
Placho, T., Schmittner, C., Bonitz, A. and Wana, O. (2020), “Management of Automotive Software updates”, Microprocessors and Microsystems, Vol. 78, pp. 103257. https://doi.org/10.1016/j.micpro.2020.103257CrossRefGoogle Scholar
Popp, P., di Natale, M., Giusto, P., Kanajan, S. and Pinello, C. (2007), “Towards a methodology for the quantitative evaluation of Automotive Architectures”, Proceedings of the 2007 Design, Automation & Test in Europe Conference & Exhibition Nice, France, April 16-20, 2007, IEEE. http://doi.org/10.1109/date.2007.364643Google Scholar
PREEvision, (2010), E/E Engineering Environment. [online] Vector, available at: https://www.vector.com/int/en/products/products-a-z/software/preevision/# (accessed 13 November 2023).Google Scholar
Press release (2022), “Baukastenstrategie als Erfolgsformel: Der MQB Feiert Zehnjaehriges Jubilaeum”.[online] Volkswagen Newsroom, available at: https://www.volkswagen-newsroom.com/de/pressemitteilungen/baukastenstrategie-als-erfolgsformel-der-mqb-feiert-zehnjaehriges-jubilaeum-8030. (accessed 13 November 2023a).Google Scholar
Reinhardt, D., and Kucera, M. (2013), “Domain Controlled Architecture- A New Approach for Large Scale Software Integrated Automotive Systems”, Proceedings of the 3rd International Conference on Pervasive Embedded Computing and Communication Systems - PECCS, 2013, SciTePress, pp. 221-226. https://doi.org/10.5220/0004340702210226CrossRefGoogle Scholar
ReportLinker, . (2021). “Intelligent vehicle E/E architecture and Computing Platform Industry Research Report, 2021”. [online] GlobeNewswire News Room. Available at: https://www.globenewswire.com/news-release/2021/09/01/2289809/0/en/Intelligent-Vehicle-E-E-Architecture-and-Computing-Platform-Industry-Research-Report-2021.htmlGoogle Scholar
Shahin, M., Liang, P. and Babar, M.A. (2014), “A systematic review of software architecture visualization techniques”, Journal of Systems and Software, Vol. 94, pp. 161185. https://doi.org/10.1016/j.jss.2014.03.071CrossRefGoogle Scholar
Schindewolf, M., Stoll, H., Guissouma, H., Puder, A., Sax, E., Vetter, A., Rumez, M., & Henle, J. (2022), “A comparison of architecture paradigms for dynamic reconfıgurable automotive networks” Proceedings of the 2022 International Conference on Connected Vehicle and Expo (ICCVE), Lakeland, FL, USA, March 07-09, 2022, IEEE, pp. 1-7. https://doi.org/10.1109/iccve52871.2022.9742775Google Scholar
Tagawa, G.B. and Souza, M.L. (2011), “An overview of the Integrated Modular Avionics (IMA) concept”, Proceedings of the Brazilian Conference on Dynamics, Control and Applications, September, 2011, DINCON, pp. 277– 280. http://doi.org/10.5540/dincon.2011.001.1.0071CrossRefGoogle Scholar
Tany, N. S., Suresh, S., Sinha, D. N., Shinde, C., Stolojescu-Crisan, C., & Khondoker, R. (2022). “Cybersecurity Comparison of Brain-Based Automotive Electrical and Electronic Architectures”. Information, Vol. 13, No. 11, pp. 518. https://doi.org/10.3390/info13110518CrossRefGoogle Scholar
Vector Group, (2010), Model-Based Electric/Electronic Development. [online] Vector, available at: https://cdn.vector.com/cms/content/products/preevision/docs/PREEvision_doc_brochure_EN.pdf (accessed 13 November 2023).Google Scholar
Volkswagen, (2022). A tale of two powertrains. [online] Volkswagen Newsroom, available at: https://www.vw.com/en/newsroom/future-of-mobility/meb-v-mqb.html. (accessed 12 February 2024).Google Scholar
Zerfowski, D. and Lock, A. (2019), “Functional architecture and E/E-architecture – a challenge for the automotive industry”, Proceedings of the 19. Internationales Stuttgarter Symposium; Stuttgart, Germany, May 25, 2019; Springer Vieweg, Wiesbaden, pp. 909920. https://doi.org/10.1007/978-3-658-25939-6_70CrossRefGoogle Scholar
Zhu, H., Zhou, W., Li, Z., Li, L. and Huang, T. (2021), “Requirements-Driven Automotive Electrical/Electronic Architecture: A Survey and Prospective Trends”, IEEE Access, Vol. 9, pp. 100096100112. https://doi.org/10.1109/access.2021.3093077CrossRefGoogle Scholar