Hostname: page-component-5b777bbd6c-w9n4q Total loading time: 0 Render date: 2025-06-19T14:36:37.624Z Has data issue: false hasContentIssue false

Kostant’s problem for parabolic Verma modules

Published online by Cambridge University Press:  27 January 2025

Volodymyr Mazorchuk
Affiliation:
Department of Mathematics, Uppsala University, Uppsala, Sweden
Shraddha Srivastava*
Affiliation:
Department of Mathematics, Indian Institute of Technology, Dharwad, India
*
Corresponding author: Shraddha Srivastava, email: maths.shraddha@gmail.com

Abstract

We give a complete combinatorial classification of the parabolic Verma modules in the principal block of the parabolic category $\mathcal{O}$ associated with a minimal or a maximal parabolic subalgebra of the special linear Lie algebra for which the answer to Kostant’s problem is positive.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andersen, H. and Stroppel, C., Twisting functors on $\mathcal{O}$, Represent. Theory 7(26) (2003), 681699.10.1090/S1088-4165-03-00189-4CrossRefGoogle Scholar
Beilinson, A. and Bernstein, J., Localisation de $\mathfrak{g}$-modules, C. R. Acad. Sci. Paris Ser. I Math. 292(1) (1981), 1518.Google Scholar
Bernstein, I.; Gelfand, I. and Gelfand, S., A certain category of $\mathfrak{g}$-modules (Russian), Funkcional. Anal. i Prilozen 10(2) (1976), 18.Google Scholar
Bernstein, J. and Gelfand, S., Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compos. Math. 41(2) (1980), 245285.Google Scholar
Brundan, J. and Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra I: cellularity, Mosc. Math. J. 11(4) (2011), 685722.10.17323/1609-4514-2011-11-4-685-722CrossRefGoogle Scholar
Brundan, J. and Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra III: category $\mathcal{O}$, Represent. Theory 15(5) (2011), 170243.10.1090/S1088-4165-2011-00389-7CrossRefGoogle Scholar
Brylinski, J. -L. and Kashiwara, M., Kazhdan–Lusztig conjecture and holonomic systems, Invent. Math. 64(3) (1981), 387410.10.1007/BF01389272CrossRefGoogle Scholar
Coulembier, K., The classification of blocks in BGG category $\mathcal{O}$, Math. Z. 295(1-2) (2020), 821837.10.1007/s00209-019-02376-9CrossRefGoogle Scholar
Gabber, O. and Joseph, A., On the Bernstein-Gelfand-Gelfand resolution and the Duflo sum formula, Compos. Math. 43(1) (1981), 107131.Google Scholar
Humphreys, J., Representations of semisimple Lie algebras in the BGG category $\mathcal{O}$, Graduate Studies in Mathematics, Volume 94 (American Mathematical Society, Providence, RI, 2008).Google Scholar
Irving, R., Projective modules in the category $\mathcal{O}_S$: self-duality, Trans. Amer. Math. Soc. 291(2) (1985), 701732.Google Scholar
Jantzen, J., Einhüllende Algebren halbeinfacher Lie-Algebren (German), Ergebnisse der Mathematik und Ihrer Grenzgebiete (3), Volume 3 (Springer-Verlag, Berlin, 1983).10.1007/978-3-642-68955-0CrossRefGoogle Scholar
Joseph, A., Kostant’s problem, Goldie rank and the Gelfand-Kirillov conjecture, Invent. Math. 56(3) (1980), 191213.10.1007/BF01390044CrossRefGoogle Scholar
Mazorchuk, V. The tale of Kostant’s problem, Preprint arXiv:2308.02839.Google Scholar
Kåhrström, J., Kostant’s problem and parabolic subgroups, Glasg. Math. J. 52(1) (2010), 1932.10.1017/S0017089509990127CrossRefGoogle Scholar
Kåhrström, J. and Mazorchuk, V., A new approach to Kostant’s problem, Algebra Number Theory 4(3) (2010), 231254.10.2140/ant.2010.4.231CrossRefGoogle Scholar
Kazhdan, D. and Lusztig, G., Representations of Coxeter groups and Hecke algebras, Invent. Math. 53(2) (1979), 165184.10.1007/BF01390031CrossRefGoogle Scholar
Khomenko, O. and Mazorchuk, V., Structure of modules induced from simple modules with minimal annihilator, Canad. J. Math. 56(2) (2004), 293309.10.4153/CJM-2004-014-5CrossRefGoogle Scholar
Ko, H.; Mazorchuk, V. and Mrdjen, R., Bigrassmannian permutations and Verma modules, Selecta Math. (N.S.) 27(4) (2021), .10.1007/s00029-021-00672-zCrossRefGoogle Scholar
Ko, H.; Mazorchuk, V. and Mrdjen, R., Some homological properties of category $\mathcal{O}$, V, Int. Math. Res. Not. IMRN 2023(4) (2023), 33293373.10.1093/imrn/rnab330CrossRefGoogle Scholar
Lusztig, G., Cells in affine Weyl groups. II, J. Algebra 109(2) (1987), 536548.10.1016/0021-8693(87)90154-2CrossRefGoogle Scholar
Mackaay, M.; Mazorchuk, V. and Miemietz, V., Kostant’s problem for fully commutative permutations, Rev. Mat. Iberoam. 40(2) (2024), 537563.10.4171/rmi/1428CrossRefGoogle Scholar
Mackaay, M.; Mazorchuk, V.; Miemietz, V. and Tubbenhauer, D., Simple transitive 2-representations via (co-)algebra 1-morphisms, Indiana Univ. Math. J. 68(1) (2019), 133.10.1512/iumj.2019.68.7554CrossRefGoogle Scholar
Mackaay, M.; Mazorchuk, V.; Miemietz, V.; Tubbenhauer, D. and Zhang, X., Finitary birepresentations of finitary bicategories, Forum Math. 33(5) (2021), 12611320.10.1515/forum-2021-0021CrossRefGoogle Scholar
Mazorchuk, V., A twisted approach to Kostant’s problem, Glasg. Math. J. 47(3) (2005), 549561.10.1017/S0017089505002776CrossRefGoogle Scholar
Mazorchuk, V., Some homological properties of the category $\mathcal{O}$. II, Represent. Theory 14(6) (2010), 249263.10.1090/S1088-4165-10-00368-7CrossRefGoogle Scholar
Mazorchuk, V. and Miemietz, V., Cell 2-representations of finitary 2-categories, Compos. Math. 147(5) (2011), 15191545.10.1112/S0010437X11005586CrossRefGoogle Scholar
Mazorchuk, V. and Miemietz, V., Additive versus abelian 2-representations of fiat 2-categories, Mosc. Math. J. 14(3) (2014), 595615.10.17323/1609-4514-2014-14-3-595-615CrossRefGoogle Scholar
Mazorchuk, V. and Stroppel, C., Categorification of (induced) cell modules and the rough structure of generalised Verma modules, Adv. Math. 219(4) (2008), 13631426.10.1016/j.aim.2008.06.019CrossRefGoogle Scholar
Rocha-Caridi, A., Splitting criteria for $\mathfrak{g}$-modules induced from a parabolic and the Bernstein-Gelfand-Gelfand resolution of a finite-dimensional, irreducible $\mathfrak{g}$-module, Trans. Amer. Math. Soc. 262(2) (1980), 335366.Google Scholar
Soergel, W., Kategorie $\mathcal{O}$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3(2) (1990), 421445.Google Scholar
Soergel, W., The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math. 429 (1992), 4974.Google Scholar
Soergel, W., Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen (German), J. Inst. Math. Jussieu 6(3) (2007), 501525.10.1017/S1474748007000023CrossRefGoogle Scholar
Stroppel, C., Category $\mathcal{O}$: gradings and translation functors, J. Algebra 268(1) (2003), 301326.10.1016/S0021-8693(03)00308-9CrossRefGoogle Scholar
Stroppel, C., Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126(3) (2005), 547596.10.1215/S0012-7094-04-12634-XCrossRefGoogle Scholar