Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Mleczko, Paweł 2016. Hadamard Multipliers and Abel Dual of Hardy Spaces. Journal of Function Spaces, Vol. 2016, p. 1.

    Constantin, Olivia and Peláez, José Ángel 2015. Boundedness of the Bergman projection on <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="" xmlns:xs="" xmlns:xsi="" xmlns="" xmlns:ja="" xmlns:mml="" xmlns:tb="" xmlns:sb="" xmlns:ce="" xmlns:xlink="" xmlns:cals="" xmlns:sa=""><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-spaces with exponential weights. Bulletin des Sciences Mathématiques, Vol. 139, Issue. 3, p. 245.

    Chatzifountas, Christos Girela, Daniel and Peláez, José Ángel 2014. A generalized Hilbert matrix acting on Hardy spaces. Journal of Mathematical Analysis and Applications, Vol. 413, Issue. 1, p. 154.

    Pavlovic, Miroslav 2014. Definition and Properties of the Libera Operator on Mixed Norm Spaces. The Scientific World Journal, Vol. 2014, p. 1.

  • Proceedings of the Edinburgh Mathematical Society, Volume 56, Issue 2
  • June 2013, pp. 623-635

Analytic functions with decreasing coefficients and Hardy and Bloch spaces

  • Miroslav Pavlović (a1)
  • DOI:
  • Published online: 26 July 2012

The following rather surprising result is noted.

(1) A function f(z) = ∑anzn such that an ↓ 0 (n → ∞) belongs to H1 if and only if ∑(an/(n + 1)) < ∞.

A more subtle analysis is needed to prove that assertion (2) remains true if H1 is replaced by the predual, 1(⊂ H1), of the Bloch space. Assertion (1) extends the Hardy–Littlewood theorem, which says the following.

(2) f belongs to Hp (1 < p < ∞) if and only if ∑(n + 1)p−2anp < ∞.

A new proof of (2) is given and applications of (1) and (2) to the Libera transform of functions with positive coefficients are presented. The fact that the Libera operator does not map H1 to H1 is improved by proving that it does not map 1 into H1.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2.N. Danikas , S. Ruscheweyh and A. Siskakis , Metrical and topological properties of a generalized Libera transform, Arch. Math. 63(6) (1994), 517524.

4.T. M. Flett , Lipschitz spaces of functions on the circle and the disc, J. Math. Analysis Applic. 39 (1972), 125158.

5.D. Girela , M. Pavlović and J. A. Peláez , Spaces of analytic functions of Hardy—Bloch type, J. Analyse Math. 100 (2006), 5383.

7.G. H. Hardy and J. E. Littlewood , Some properties of fractional integrals, II, Math. Z. 34 (1932), 403439.

8.M. Jevtić ; and M. Pavlović , On multipliers from Hp to lq (0 <q <p < 1), Arch. Math. 56 (1991), 174180.

10.R. J. Libera , Some classes of regular univalent functions, Proc. Am. Math. Soc. 16 (1965), 755758.

11.J. Lindenstrauss and L. Tzafriri , Classical Banach spaces, I, Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 92 (Springer, 1977).

13.M. Mateljević and M. Pavlović , Lp-behavior of power series with positive coefficients and Hardy spaces, Proc. Am. Math. Soc. 87(2) (1983), 309316.

15.M. Nowak and M. Pavlović , On the Libera operator, J. Math. Analysis Applic. 370(2) (2010), 588599.

17.M. Pavlović , A short proof of an inequality of Littlewood and Paley, Proc. Am. Math. Soc. 134 (2006), 36253627.

19.A. L. Shields and D. L. Williams , Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Am. Math. Soc. 162 (1971), 287302.

22.J. Xiao , Holomorphic Q classes, Lecture Notes in Mathematics, Volume 1767 (Springer, 2001).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Edinburgh Mathematical Society
  • ISSN: 0013-0915
  • EISSN: 1464-3839
  • URL: /core/journals/proceedings-of-the-edinburgh-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *