Skip to main content

A Convenient Notion of Compact Set for Generalized Functions

  • Paolo Giordano (a1) and Michael Kunzinger (a1)

We introduce the notion of functionally compact sets into the theory of nonlinear generalized functions in the sense of Colombeau. The motivation behind our construction is to transfer, as far as possible, properties enjoyed by standard smooth functions on compact sets into the framework of generalized functions. Based on this concept, we introduce spaces of compactly supported generalized smooth functions that are close analogues to the test function spaces of distribution theory. We then develop the topological and functional–analytic foundations of these spaces.

Hide All
1. Aragona J. and Juriaans S. O., Some structural properties of the topological ring of Colombeau's generalized numbers, Commun. Alg. 29(5) (2001), 22012230.
2. Aragona J., Fernandez R. and Juriaans S. O., A discontinuous Colombeau differential calculus, Monatsh. Math. 144 (2005), 1329.
3. Aragona J., Juriaans S. O., Oliveira O. R. B. and Scarpalézos D., Algebraic and geometric theory of the topological ring of Colombeau generalized functions, Proc. Edinb. Math. Soc. 51(3) (2008), 545564.
4. Aragona J., Fernandez R. and Juriaans S. O., Natural topologies on Colombeau algebras, Topolog. Meth. Nonlin. Analysis 34(1) (2009), 161180.
5. Aragona J., Fernandez R., Juriaans S. O. and Oberguggenberger M., Differential calculus and integration of generalized functions over membranes, Monatsh. Math. 166 (2012), 118.
6. Aragona J., Colombeau J. F. and Juriaans S. O., Locally convex topological algebras of generalized functions: compactness and nuclearity in a nonlinear context, Trans. Am. Math. Soc. 367 (2015), 53995414.
7. Biagioni H. A., A nonlinear theory of generalized functions, Lecture Notes in Mathematics, Volume 1421 (Springer, 1990).
8. Colombeau J. F., New generalized functions and multiplication of distributions (North-Holland, Amsterdam, 1984).
9. Colombeau J. F., Elementary introduction to new generalized functions (North-Holland, Amsterdam, 1985).
10. Delcroix A., Hasler M. F., Pilipovic S. and Valmorin V., Sequence spaces with exponent weights. Realizations of Colombeau type algebras, Diss. Math. 447 (2007), 173.
11. Garetto C., Topological structures in Colombeau algebras: topological C-modules and duality theory, Acta Appl. Math. 88(1) (2005), 81123.
12. Garetto C., Topological structures in Colombeau algebras: investigation of the duals of , Monatsh. Math. 146(3) (2005), 203226.
13. Garetto C., Fundamental solutions in the Colombeau framework: applications to solvability and regularity theory, Acta Appl. Math. 102 (2008), 281318.
14. Garetto C., Closed graph and open mapping theorems for topological -modules and applications, Math. Nachr. 282(8) (2009), 11591188.
15. Garetto C. and Hörmann G., On duality theory and pseudodifferential techniques for Colombeau algebras: generalized delta functionals, kernels and wave front sets, Bull. Acad. Serbe Cl. Sci. 31 (2006), 115136.
16. Garetto C. and Vernaeve H., Hilbert -modules: structural properties and applications to variational problems, Trans. Am. Math. Soc. 363(4) (2011), 20472090.
17. Giordano P. and Kunzinger M., New topologies on Colombeau generalized numbers and the Fermat–Reyes theorem, J. Math. Analysis Applic. 399 (2013), 229238.
18. Giordano P. and Luperi Baglini L., Asymptotic gauges: generalization of Colombeau type algebras, Math. Nachr. 289 (2016), 247274.
19. Giordano P. and Nigsch E., Unifying order structures for Colombeau algebras, Math. Nachr. 288(11) (2015), 12861302.
20. Giordano P. and Wu E., Categorical frameworks for generalized functions, Arab. J. Math. 4(4) (2015), 301328.
21. Giordano P., Kunzinger M. and Vernaeve H., Strongly internal sets and generalized smooth functions, J. Math. Analysis Applic. 422 (2015), 5671.
22. Grosser M., Kunzinger M., Oberguggenberger M. and Steinbauer R., Geometric theory of generalized functions (Kluwer, Dordrecht, 2001).
23. Mayerhofer E., Spherical completeness of the non-Archimedean ring of Colombeau generalized numbers, Bull. Inst. Math. Acad. Sin. 2(3) (2007), 769783.
24. Mayerhofer E., On Lorentz geometry in algebras of generalized functions, Proc. R. Soc. Edinb. A138(4) (2008), 843871.
25. Oberguggenberger M., Multiplication of distributions and applications to partial differential equations, Pitman Research Notes in Mathematics, Volume 259 (Longman, New York, 1992).
26. Oberguggenberger M. and Kunzinger M., Characterization of Colombeau generalized functions by their pointvalues, Math. Nachr. 203 (1999), 147157.
27. Oberguggenberger M. and Vernaeve H., Internal sets and internal functions in Colombeau theory, J. Math. Analysis Applic. 341 (2008), 649659.
28. Scarpalézos D., Some remarks on functoriality of Colombeau's construction; topological and microlocal aspects and applications, Integ. Transf. Special Funct. 6(1–4) (1998), 295307.
29. Scarpalézos D., Colombeau's generalized functions: topological structures; microlocal properties—A simplified point of view, I, Bull. Cl. Sci. Math. Nat. Sci. Math. 25 (2000), 89114.
30. Vernaeve H., Ideals in the ring of Colombeau generalized numbers, Commun. Alg. 38(6) (2010), 21992228.
31. Vernaeve H., Nonstandard principles for generalized functions, J. Math. Analysis Applic. 384(2) (2011), 536548.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Edinburgh Mathematical Society
  • ISSN: 0013-0915
  • EISSN: 1464-3839
  • URL: /core/journals/proceedings-of-the-edinburgh-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 170 *
Loading metrics...

* Views captured on Cambridge Core between 3rd April 2017 - 23rd January 2018. This data will be updated every 24 hours.