Skip to main content Accessibility help

A New Class of Maximal Triangular Algebras

  • John Lindsay Orr (a1)


Triangular algebras, and maximal triangular algebras in particular, have been objects of interest for over 50 years. Rich families of examples have been studied in the context of many w*- and C*-algebras, but there remains a dearth of concrete examples in $B({\cal H})$ . In previous work, we described a family of maximal triangular algebras of finite multiplicity. Here, we investigate a related family of maximal triangular algebras with infinite multiplicity, and unearth a new asymptotic structure exhibited by these algebras.



Hide All
1Davidson, K. R., Similarity and compact perturbations of nest algebras, J. Reine Angew. Math. 348 (1984), 286294.
2Davidson, K. R., Nest algebras (eds Brezis, H., Douglas, R. G. and Jeffrey, A.), Research Notes in Mathematics, Volume 191, pp. 1412 (Pitman, Boston, MA, 1988).
3Erdos, J. A., Unitary invariants for nests, Pacific J. Math. 23 (1967), 229256.
4Kadison, R. V., Triangular algebras–another chapter, In Selfadjoint and nonselfadjoint operator algebras and operator theory (ed. Doran, R. S.), Contemporary Mathematics, Volume 120, pp. 6376 (CBMS), (American Mathematical Society, 1991).
5Kadison, R. V. and Singer, I. M., Extensions of pure states, Amer. J. Math. 81 (1959), 383400.
6Kadison, R. V. and Singer, I. M., Triangular operator algebras, Amer. J. Math. 82(2) (1960), 227259.
7Larson, D. R., Nest algebras and similarity transformations, Ann. Math. 121 (1985), 409427.
8Muhly, P. S., Saito, K.-S. and Solel, B., Coordinates for triangular operator algebras, Ann. of Math. (2) 127 (1988), 245278.
9Muhly, P. S. and Solel, B., Subalgebras of groupoid C*-algebras, J. Reine Angew. Math. 402 (1989), 4175.
10Orr, J. L., On the closure of triangular algebras, Amer. J. Math. 112 (1990), 481497.
11Orr, J. L., An estimate on the norm of the product of infinite block operator matrices, J. Combin. Theory Ser. A 63(2) (1993), 195209.
12Orr, J. L., The maximal ideals of a nest algebra, J. Func. Anal. 124 (1994), 119134.
13Orr, J. L., Triangular algebras and ideals of nest algebras, Mem. Amer. Math. Soc. 117(562) 1995, 49pp.
14Orr, J. L., The stable ideals of a continuous nest algebra, J. Operator Theory 45 (2001), 377412.
15Peters, J. R., Poon, Y. T. and Wagner, B. H., Triangular AF algebras, J. Operator Theory 23(1) (1990), 81114.
16Poon, Y. T., Maximal triangular subalgebras need not be closed, Proc. Amer. Math. Soc. (1991), 475479.
17Power, S. C., The classification of triangular subalgebras of AF C*-algebras, Bull. Lond. Math. Soc. 22(3) (1990), 269272.
18Ringrose, J. R., On some algebras of operators, Proc. London Math. Soc. 15(3) (1965), 6183.
19Solel, B., Irreducible triangular algebras, Volume 290 (American Mathematical Society, 1984).
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Related content

Powered by UNSILO

A New Class of Maximal Triangular Algebras

  • John Lindsay Orr (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.