Hostname: page-component-65f69f4695-2qqrh Total loading time: 0 Render date: 2025-06-30T02:42:54.347Z Has data issue: false hasContentIssue false

On infinite groups of Fibonacci type

Published online by Cambridge University Press:  20 January 2009

Colin M. Campbell
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews KYI6 9SS
Richard M. Thomas
Affiliation:
Department of Mathematics, St Mary's College, Twickenham TW1 4SX
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Fn = 〈 a1,a2,…,an〉 denote the free group of rank n, and let θ denote the automorphism of Fn which permutes the generators cyclically, in other words:

Information

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1986

References

REFERENCES

1Brunner, A. M., The determination of Fibonacci groups, Bull. Austral. Math. Soc. 11 (1974), 1114.CrossRefGoogle Scholar
2Brunner, A. M., On groups of Fibonacci type, Proc. Edinburgh Math. Soc. 20 (1977), 211213.CrossRefGoogle Scholar
3Campbell, C. M. and Robertson, E. F., Applications of the Todd-Coxeter algorithm to generalized Fibonacci groups, Proc. Roy. Soc. Edinburgh 73A (1974/1975), 163166.CrossRefGoogle Scholar
4Campbell, C. M . and Robertson, E. F., The orders of certain metacyclic groups, Bull. London Math. Soc. 6 (1974), 312314.CrossRefGoogle Scholar
5Campbell, C. M. and Robertson, E. F., On metacyclic Fibonacci groups, Proc. Edinburgh Math. Soc. 19 (1975), 253256.CrossRefGoogle Scholar
6Campbell, C. M. and Robertson, E. F., On a class of finitely presented groups of Fibonacci type, J. London Math. Soc. 11 (1975), 249255.CrossRefGoogle Scholar
7Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups (Springer, Berlin, 3rd ed., 1972).CrossRefGoogle Scholar
8Havas, G., Richardson, J. S. and Sterling, L. S., The last of the Fibonacci groups, Proc. Roy. Soc. Edinburgh 83 A (1979), 199203.CrossRefGoogle Scholar
9Johnson, D. L., Some infinite Fibonacci groups, Proc. Edinburgh Math. Soc. 19 (1975), 311314.CrossRefGoogle Scholar
10Johnson, D. L., Presentations of groups (LMS lecture notes no. 22, Cambridge University Press, 1976).Google Scholar
11Johnson, D. L., Wamsley, J. W. and Wright, D., The Fibonacci groups, Proc. London Math. Soc. 29 (1974), 577592.CrossRefGoogle Scholar
12Seal, D. J., The orders of the Fibonacci groups, Proc. Roy. Soc. Edinburgh 92A (1982), 181192.CrossRefGoogle Scholar
13Thomas, R. M., Some infinite Fibonacci groups, Bull. London Math. Soc. 15 (1983), 384386.CrossRefGoogle Scholar