1.Pino, G. Aranda, Clark, J., Huef, A. and Raeburn, I., Kumjian–Pask algebras of higher-rank graphs, Trans. Am. Math. Soc., in press.

2.Baum, P. F., Hajac, P. M., Matthes, R. and Szymański, W., The *K*-theory of Heegaard-type quantum 3-spheres, K-Theory 35 (2005), 159–186.

3.Davidson, K. R. and Yang, D., Periodicity in rank 2 graph algebras, Can. J. Math. 61 (2009), 1239–1261.

4.Davidson, K. R. and Yang, D., Representations of higher rank graph algebras, New York J. Math. 15 (2009), 169–198.

5.Deicke, K., Hong, J. H. and Szymański, W., Stable rank of graph algebras: type I graph algebras and their limits, Indiana Univ. Math. J. 52 (2003), 963–979.

6.Drinen, D., Viewing AF-algebras as graph algebras, Proc. Am. Math. Soc. 128 (2000), 1991–2000.

7.Evans, D. G., On the *K*-theory of higher-rank graph *C**-algebras, New York J. Math. 14 (2008), 1–31.

8.Farthing, C., Muhly, P. S. and Yeend, T., Higher-rank graph *C**-algebras: an inverse semigroup and groupoid approach, Semigroup Forum 71 (2005), 159–187.

9.Fowler, N. J. and Sims, A., Product systems over right-angled Artin semigroups, Trans. Am. Math. Soc. 354 (2002), 1487–1509.

11.Hong, J. H. and Szymański, W., Quantum spheres and projective spaces as graph algebras, Commun. Math. Phys. 232 (2002), 157–188.

12.Hong, J. H. and Szymański, W., The primitive ideal space of the *C**-algebras of infinite graphs, J. Math. Soc. Jpn 56 (2004), 45–64.

13.Jeong, J. A. and Park, G. H., Graph *C**-algebras with real rank zero, J. Funct. Analysis 188 (2002), 216–226.

14.Kumjian, A. and Pask, D., Higher rank graph *C**-algebras, New York J. Math. 6 (2000), 1–20.

15.Lewin, P. and Sims, A., Aperiodicity and co.nality for finitely aligned higher-rank graphs, Math. Proc. Camb. Phil. Soc. 149 (2010), 333–350.

16.Pask, D., Quigg, J. and Raeburn, I., Fundamental groupoids of *k*-graphs, New York J. Math. 10 (2004), 195–207.

17.Pask, D., Raeburn, I., Rørdam, M. and Sims, A., Rank-two graphs whose *C**-algebras are direct limits of circle algebras, J. Funct. Analysis 239 (2006), 137–178.

18.Pask, D., Raeburn, I. and Weaver, N. A., A family of 2-graphs arising from two-dimensional subshifts, Ergod. Theory Dynam. Syst. 29 (2009), 1613–1639.

19.Raeburn, I., Sims, A. and Yeend, T., Higher-rank graphs and their *C**-algebras, Proc. Edinb. Math. Soc. 46(2) (2003), 99–115.

20.Raeburn, I., Sims, A. and Yeend, T., The *C**-algebras of finitely aligned higher-rank graphs, J. Funct. Analysis 213 (2004), 206–240.

21.Robertson, D. I. and Sims, A., Simplicity of *C**-algebras associated to higher-rank graphs, Bull. Lond. Math. Soc. 39 (2007), 337–344.

22.Robertson, D. I. and Sims, A., Simplicity of *C**-algebras associated to row-finite locally convex higher-rank graphs, Israel J. Math. 172 (2009), 171–192.

23.Schubert, H., Categories (transl. by Gray, E.) (Springer, 1972).

24.Shotwell, J., Simplicity of finitely aligned *k*-graph *C**-algebras. J. Operat. Theory 67 (2012), 335–347.

25.Spielberg, J., Graph-based models for Kirchberg algebras, J. Operat. Theory 57 (2007), 347–374.

26.Webster, S. B. G., The path space of a higher-rank graph, Studia Math. 204 (2011), 155–185.