Skip to main content
    • Aa
    • Aa

Schur Multipliers of Cartan Pairs

  • R. H. Levene (a1), N. Spronk (a2), I. G. Todorov (a3) and L. Turowska (a4)

We define the Schur multipliers of a separable von Neumann algebra with Cartan maximal abelian self-adjoint algebra , generalizing the classical Schur multipliers of ( 2). We characterize these as the normal -bimodule maps on . If contains a direct summand isomorphic to the hyperfinite II1 factor, then we show that the Schur multipliers arising from the extended Haagerup tensor product eh are strictly contained in the algebra of all Schur multipliers.

Hide All
1. W. B. Arveson , Operator algebras and invariant subspaces, Annals Math. 100(2) (1974), 433532.

2. D. P. Blecher and C. Le Merdy , Operator algebras and their modules: an operator space approach (Oxford University Press, 2004).

5. A. Connes , J. Feldman and B. Weiss , An amenable equivalence relation is generated by a single transformation, Ergod. Theory Dynam. Syst. 1 (1981), 431450.

6. J. A. Erdos , A. Katavolos and V. S. Shulman , Rank one subspaces and bimodules over maximal abelian selfadjoint algebras, J. Funct. Analysis 157 (1998), 554587.

7. J. Feldman and C. C. Moore , Ergodic equivalence relations, cohomology and von Neumann algebras, I, Trans. Am. Math. Soc. 234(2) (1977), 289324.

11. A. Katavolos and V. I. Paulsen , On the ranges of bimodule projections, Can. Math. Bull. 48 (2005), 97111.

14. F. Pop , A. M. Sinclair and R. R. Smith , Norming C *-algebras by C *-subalgebras, J. Funct. Analysis 175(1) (2000), 168196.

15. F. Pop and R. R. Smith , Schur products and completely bounded maps on the hyper-finite II1 factor, J. Lond. Math. Soc. 52(2) (1995), 594604.

16. J. Renault , A groupoid approach to C*-algebras (Springer, 1980).

17. J. Renault , The Fourier algebra of a measured groupoid and its multipliers, J. Funct. Analysis 145 (1997), 455490.

19. A. M. Sinclair and R. R. Smith , Finite von Neumann algebras and masas (Cambridge University Press, 2008).

20. R. R. Smith , Completely bounded module maps and the Haagerup tensor product, J. Funct. Analysis 102 (1991), 156175.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Edinburgh Mathematical Society
  • ISSN: 0013-0915
  • EISSN: 1464-3839
  • URL: /core/journals/proceedings-of-the-edinburgh-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 345 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.