Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Peláez, José Ángel and Rättyä, Jouni 2016. Two weight inequality for Bergman projection. Journal de Mathématiques Pures et Appliquées, Vol. 105, Issue. 1, p. 102.

    Arroussi, Hicham and Pau, Jordi 2015. Reproducing Kernel Estimates, Bounded Projections and Duality on Large Weighted Bergman Spaces. The Journal of Geometric Analysis, Vol. 25, Issue. 4, p. 2284.

    Constantin, Olivia and Peláez, José Ángel 2015. Boundedness of the Bergman projection on <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="" xmlns:xs="" xmlns:xsi="" xmlns="" xmlns:ja="" xmlns:mml="" xmlns:tb="" xmlns:sb="" xmlns:ce="" xmlns:xlink="" xmlns:cals="" xmlns:sa=""><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-spaces with exponential weights. Bulletin des Sciences Mathématiques, Vol. 139, Issue. 3, p. 245.

    Munasinghe, Samangi and Zeytuncu, Yunus E. 2015. Irregularity of the Szegö Projection on Bounded Pseudoconvex Domains in $${\mathbb{C}^2}$$ C 2. Integral Equations and Operator Theory, Vol. 82, Issue. 3, p. 417.

    Pau, Jordi and Peláez, José Ángel 2010. Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. Journal of Functional Analysis, Vol. 259, Issue. 10, p. 2727.

    Dostanic, Milutin 2009. Boundedness of the Bergman projections on Lp spaces with radial weights. Publications de l'Institut Mathematique, Vol. 86, Issue. 100, p. 5.

  • Proceedings of the Edinburgh Mathematical Society, Volume 47, Issue 1
  • February 2004, pp. 111-117


  • Milutin R. Dostanić (a1)
  • DOI:
  • Published online: 27 May 2004

We prove that the Bergman projection on $L^p(w)$ $(p\neq 2)$, where $w(r)=(1-r^2)^A\textrm{e}^{-B/(1-r^2)^{\alpha}}$, is not bounded.

AMS 2000 Mathematics subject classification: Primary 47B10

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Edinburgh Mathematical Society
  • ISSN: 0013-0915
  • EISSN: 1464-3839
  • URL: /core/journals/proceedings-of-the-edinburgh-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *