Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-09-20T08:15:50.580Z Has data issue: false hasContentIssue false

Variational principles of metric mean dimension for random dynamical systems

Published online by Cambridge University Press:  18 September 2025

Yunping Wang
Affiliation:
School of Statistics and Data Science, Ningbo University of Technology, Ningbo 315211, Zhejiang, PR China
Ercai Chen
Affiliation:
School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210046, Jiangsu, PR China
Kexiang Yang*
Affiliation:
School of Mathematical Sciences, Fudan University, Shanghai 200433, Shanghai, PR China
*
Corresponding author: Kexiang Yang, email: kxyangs@163.com

Abstract

In this paper, we establish variational principles for the metric mean dimension of random dynamical systems with infinite topological entropy. This is based on four types of measure-theoretic ϵ-entropies: Kolmogorov-Sinai ϵ-entropy, Shapira’s ϵ-entropy, Katok’s ϵ-entropy and Brin–Katok local ϵ-entropy. The variational principle, as a fundamental theorem, links topological dynamics and ergodic theory.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arnold, L., Random Dynamical Systems, (Springer, 1998).Google Scholar
Bogenschutz, T., Entropy, pressure and a variational principle for random dynamical systems, Random Comput. Dyn. 1(1): (1992), 99116.Google Scholar
Bogenschutz, T. and Gundlach, M., Ruelle’s transfer operator for random subshifts of finite type, Ergodic Theory Dynam. Systems 39(3): (1995), 413447.CrossRefGoogle Scholar
Chen, E., Dou, D. and Zheng, D., Variational principles for amenable metric mean dimensions, J. Differential Equations. 319 (2022), 4179.10.1016/j.jde.2022.02.046CrossRefGoogle Scholar
Crauel, H., Random Probability Measures on Polish Spaces, (Taylor and Francis, 2002).10.1201/b12601CrossRefGoogle Scholar
Dooley, A. and Zhang, G., Local entropy theory of a random dynamical system, Mem. Amer. Math. Soc. 233(1099): (2015), .Google Scholar
Elliott, G. A. and Niu, Z., The $C^{*}$-algebra of a minimal homeomorphism of zero mean dimension, Duke Math. J. 166(18): (2017), 35693594.10.1215/00127094-2017-0033CrossRefGoogle Scholar
Glasner, E. and Weiss, B., On the interplay between measurable and topological dynamical Handbook of Dynamical systems, (Eds. Hasselblatt, K.), Volume 1 B., , (North-Holland, 2005).Google Scholar
Goodman, T., Relating topological entropy and measure entropy, Bull. Lond. Math. Soc. 3 (1971), 176180.CrossRefGoogle Scholar
Goodwyn, L., Topological entropy bounds measures-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679688.Google Scholar
Gromov, M., Topological invariants of dynamical systems and spaces of holomorphic maps, I. Math. Phys. Anal. Geom. 2(4): (1999), 323415.10.1023/A:1009841100168CrossRefGoogle Scholar
Gutman, Y., Lindenstrauss, E. and Tsukamoto, M., Mean dimension of $\mathbb{Z}^{k}$-actions, Geom. Funct. Anal. 26(3): (2016), 778817.10.1007/s00039-016-0372-9CrossRefGoogle Scholar
Gutman, Y., Qiao, Y. and Tsukamoto, M., Application of signal analysis to the embedding problem of $\mathbb{Z}^{k}$-actions, Geom. Funct. Anal. 29(5): (2019), 14401502.CrossRefGoogle Scholar
Gutman, Y. and Spiewak, A., Around the variational principle for metric mean dimension, Studia Math. 261(3): (2021), 345360.CrossRefGoogle Scholar
Kifer, Y., Ergodic Theory of Random Transformations, (Birkhauser, 1986).CrossRefGoogle Scholar
Kifer, Y., On the topological pressure for random bundle transformations, Trans. Amer. Math. Soc. Ser. 2 202 (2001), 197214.Google Scholar
Ledrappier, F. and Young, L., Dimension formula for random transformations, Commun. Math. Phys. 117(4): (1988), 529548.10.1007/BF01218383CrossRefGoogle Scholar
Li, H. and Liang, B., Mean dimension, mean rank, and von Neumann Lück rank, J. Reine Angew. Math. 739 (2018), 207240.10.1515/crelle-2015-0046CrossRefGoogle Scholar
Lian, Z. and Lu, K., Lyapunov exponents and invariant manifolds for random dynamical systems in a banach space, Mem. Amer. Math. Soc. 206(967): (2010), .Google Scholar
Liang, B., Dynamical correspondences of L 2-Betti numbers, Groups Geom. Dyn. 13(1): (2019), 89106.CrossRefGoogle Scholar
Lindenstrauss, E. and Tsukamoto, M., Mean dimension and an embedding problem: an example, Israel J. Math. 199(2): (2014), 573584.CrossRefGoogle Scholar
Lindenstrauss, E. and Tsukamoto, M., From rate distortion theory to metric mean dimension: variational principle, IEEE Trans. Inf. Theory 64(5): (2018), 35903609.10.1109/TIT.2018.2806219CrossRefGoogle Scholar
Lindenstrauss, E. and Tsukamoto, M., Double variational principle for mean dimension, Geom. Funct. Anal. 29(4): (2019), 10481109.CrossRefGoogle Scholar
Lindenstrauss, E. and Weiss, B., Mean topological dimension, Israel J. Math. 115 (2000), 124.10.1007/BF02810577CrossRefGoogle Scholar
Liu, P., Dynamics of random transformations: smooth ergodic theory, Ergodic Theory Dynam. Systems 21(5): (2001), 12791319.10.1017/S0143385701001614CrossRefGoogle Scholar
Ma, X. and Chen, E., A local variational principle for random bundle transformations, Stoch. Dyn. 13(3): (2013), .10.1142/S0219493712500232CrossRefGoogle Scholar
Ma, X., Yang, J. and Chen, E., Mean topological dimension for random bundle transformations, Ergodic Theory Dynam. Systems 39(4): (2019), 10201041.10.1017/etds.2017.51CrossRefGoogle Scholar
Romagnoli, P., A local variational principle for the topological entropy, Ergodic Theory Dynam. Systems 23(5): (2003), 16011610.CrossRefGoogle Scholar
Shapira, U., Measure theoretical entropy of covers, Israel J. Math. 158 (2007), 225247.CrossRefGoogle Scholar
Shi, R., On variational principle for metric mean dimension, IEEE Trans. Inf. Theory 68(7): (2022), 42824288.10.1109/TIT.2022.3157786CrossRefGoogle Scholar
Shiedlds, P., The Ergodic Theory of Discrete Sample paths (Graduate Studies in mathematics), Volume 13, (American mathematical society, 1996).Google Scholar
Shinoda, M. and Tsukamoto, M., Symbolic dynamics in mean dimension theory, Ergodic Theory Dynam. Systems 41(8): (2021), 25422560.10.1017/etds.2020.47CrossRefGoogle Scholar
Tsukamoto, M., Mean dimension of the dynamical system of Brody curves, Invent. Math. 211(3): (2018), 935968.Google Scholar
Tsukamoto, M., Large dynamics of Yang-Mills theory: mean dimension formula, J. Anal. Math. 134(2): (2018), 455499.10.1007/s11854-018-0014-2CrossRefGoogle Scholar
Velozo, A. and Velozo, R., Rate distortion theory, metric mean dimension and measure theoretic entropy. (arXiv:1707.05762).Google Scholar
Wang, T., Variational relations for metric mean dimension and rate distortion dimension, Discrete Contin. Dyn. Syst. 41(10): (2021), 45934608.CrossRefGoogle Scholar
Wu, W., On relative metric mean dimension with potential and variational principles, J. Dynam. Differential Equations 34(3): (2022), 23132335.Google Scholar
Yang, R., Chen, E. and Zhou, X., Bowen’s equations for upper metric mean dimension with potential, Nonlinearity 35(9): (2022), 49054938.10.1088/1361-6544/ac8265CrossRefGoogle Scholar
Zhu, J., On local entropy of random transformations, Stoch. Dyn. 8(2): (2008), 197207.10.1142/S0219493708002275CrossRefGoogle Scholar
Zhu, J., Two notes on measure-theoretic entropy of random dynamical systems, Acta Math. Sin. 25(6): (2009), 961970.10.1007/s10114-009-7206-8CrossRefGoogle Scholar