Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-14T12:31:15.228Z Has data issue: false hasContentIssue false

3D turbulent reconnection driven current-sheet dynamics: solar applications

Published online by Cambridge University Press:  08 June 2011

Lapo Bettarini
Affiliation:
Centrum voor Plasma-Astrofysica, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium email: lapo.bettarini@wis.kuleuven.be
Giovanni Lapenta
Affiliation:
Centrum voor Plasma-Astrofysica, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium email: lapo.bettarini@wis.kuleuven.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide a complete three-dimensional picture of the reconnecting dynamics of a current-sheet. Recently, a two-dimensional non-steady reconnection dynamics has been proved to occur without the presence of any anomalous effect (Lapenta, 2008, Skender & Lapenta, 2010, Bettarini & Lapenta, 2010) but such a picture must be confirmed in a full three-dimensional configuration wherein all instability modes are allowed to drive the evolution of the system, i.e. to sustain a reconnection dynamics or to push the system along a different instability path. Here we propose a full-space analysis allowing us to determine the longitudinal and, possibly, the transversal modes driving the different current-sheet disruption regimes, the corresponding characteristic time-scales and to study system's instability space- parameter (plasma beta, Lundquist and Reynolds numbers, system's aspect ratio). The conditions leading to an explosive evolution rather then to a diffusive dynamics as well as the details of the reconnection inflow/outflow regime at the disruption phase are determined. Such system embedded in a solar-like environment and undergoing a non-steady reconnection evolution may determine the formation both of jets and waves influencing the dynamics and energetic of the upper layers and of characteristic down-flows as observed in the low solar atmosphere.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bettarini, L. & Lapenta, G. 2010, A&A, 518, A57Google Scholar
Brackbill, J. U. 1991, J. Comp. Phys., 96, 163CrossRefGoogle Scholar
Cirtain, J. W., Golub, L., Lundquist, L., van Ballegooijen, A., Savcheva, A., Shimojo, M., DeLuca, E., Tsuneta, S., Sakao, T., Reeves, K., Weber, M., Kano, R., Narukage, N., & Shibasaki, K. 2007, Science, 318, 1580CrossRefGoogle Scholar
Lapenta, G. 2008, Phys. Rev. Lett., 100, 235001CrossRefGoogle Scholar
Shibata, K., Nakamura, T., Matsumoto, T., Otsuji, K., Okamoto, T. J., Nishizuka, N., Kawate, T., Watanabe, H., Nagata, S., UeNo, S., Kitai, R., Nozawa, S., Tsuneta, S., Suematsu, Y., Ichimoto, K., Shimizu, T., Katsukawa, Y., Tarbell, T. D., Berger, T. E., Lites, B. W., Shine, R. A., & Title, A. M. 2007, Science, 318, 1591CrossRefGoogle Scholar
Skender, M. & Lapenta, G. 2010, Phys. Plasmas, 17, 022905CrossRefGoogle Scholar