No CrossRef data available.
Published online by Cambridge University Press: 30 October 2025
It is routinely assumed that galaxy rotation curves are equal to their circular velocity curves (modulo some corrections) such that they are good dynamical mass tracers. We analysed 33 low-mass galaxies from the APOSTLE simulation suite to explore the limits of validity of this assumption. Only 3 galaxies have rotation curves similar to their circular velocity curves; the rest are undergoing a wide variety of dynamical perturbations. We assessed how many galaxies are likely to be strongly perturbed by processes in several categories: mergers/interactions, bulk gas flows, non-spherical DM halo, warps, and IGM ram pressure. Most galaxies fall into more than one of these categories; only 5/33 are not in any of them. The sum of these effects leads to an underestimation of the low-velocity slope of the baryonic Tully-Fisher relation that is difficult to avoid, and could contribute to the observed diversity in low-mass galaxy rotation curve shapes.