Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T19:26:29.694Z Has data issue: false hasContentIssue false

AGB stars and the cosmic dust cycle

Published online by Cambridge University Press:  30 December 2019

Svitlana Zhukovska*
Affiliation:
Max Planck Institute for Astrophysics Karl-Schwarzshild-Str. 1, 85748 Garching, Germany email: szhukovska@mpa-garching.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Theoretical and observational studies of dust condensed in outflows of AGB stars have substantially advanced the understanding of dust mixture from individual stars. This detailed information incorporated in models of the lifecycle of interstellar grains provides a flexible tool to study the contribution of AGB stars to the galactic dust budget. The role of these stars in dust production depends on the morphological type and age of galaxy. While AGB stars are sub-dominant dust sources in evolved systems as the Milky Way, the observed relation between the dust-to-gas ratio and metallicity suggests that the dust input in young dwarf galaxies with 7≲12+log(O/H)≲8 can be dominated by the AGB stars. In application to post-starburst and early-type galaxies, the models for stardust evolution in combination with modern infrared observations give insights in the origin of their high dust content and its implications for their evolutionary scenarios.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Boyer, M. L., Srinivasan, S., Riebel, D., et al. 2012, ApJ, 748, 40 10.1088/0004-637X/748/1/40CrossRefGoogle Scholar
Dariush, A., Dib, S., Hony, S., et al. 2016, MNRAS, 456, 2221 10.1093/mnras/stv2767CrossRefGoogle Scholar
Dwek, E. 1998, ApJ, 501, 643 10.1086/305829CrossRefGoogle Scholar
Ferrarotti, A. S., & Gail, H.-P. 2006, A&A, 447, 553 Google Scholar
Gail, H.-P., Zhukovska, S. V., Hoppe, P., & Trieloff, M. 2009, ApJ, 698, 1136 10.1088/0004-637X/698/2/1136CrossRefGoogle Scholar
Matsuura, M., Barlow, M. J., Zijlstra, A. A., et al. 2009, MNRAS, 396, 918 10.1111/j.1365-2966.2009.14743.xCrossRefGoogle Scholar
Meixner, M., Gordon, K. D., Indebetouw, R., et al. 2006, ApJ, 132, 2268 10.1086/508185CrossRefGoogle Scholar
Rémy-Ruyer, A., Madden, S. C., Galliano, F., et al. 2014, A&A, 563, A31 Google Scholar
Riebel, D., Srinivasan, S., Sargent, B., & Meixner, M. 2012, ApJ, 753, 71 10.1088/0004-637X/753/1/71CrossRefGoogle Scholar
Smercina, A., Smith, J. D. T., Dale, D. A., et al. 2018, ApJ, 855, 51 10.3847/1538-4357/aaafcdCrossRefGoogle Scholar
Srinivasan, S., Meixner, M., Leitherer, C., et al. 2009, ApJ, 137, 4810 10.1088/0004-6256/137/6/4810CrossRefGoogle Scholar
Zhukovska, S. 2014, A&A, 562, A76 Google Scholar
Zhukovska, S., & Henning, T. 2013, A&A, 555, A99 Google Scholar
Zhukovska, S., & Henning, T. 2013, in The Life Cycle of Dust in the Universe: Observations, Theory, and Laboratory Experiments, ed. A. Andersen et al. (Trieste: SISSA), 16Google Scholar
Zhukovska, S., Gail, H.-P., & Trieloff, M. 2008, A&A, 479, 453 Google Scholar
Zhukovska, S., Petrov, M., & Henning, T. 2015, ApJ, 810, 128 10.1088/0004-637X/810/2/128CrossRefGoogle Scholar