Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-ns2hh Total loading time: 0.323 Render date: 2022-09-30T06:38:51.498Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Application of Test Particle Simulations to Solar Energetic Particle Forecasting

Published online by Cambridge University Press:  24 July 2018

S. Dalla
Affiliation:
University of Central Lancashire, Preston, PR1 2HE, UK
B. Swalwell
Affiliation:
University of Central Lancashire, Preston, PR1 2HE, UK
M. Battarbee
Affiliation:
University of Central Lancashire, Preston, PR1 2HE, UK
M. S. Marsh
Affiliation:
Met Office, Exeter, UK
T. Laitinen
Affiliation:
University of Central Lancashire, Preston, PR1 2HE, UK
S. J. Proctor
Affiliation:
University of Central Lancashire, Preston, PR1 2HE, UK
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Modelling of Solar Energetic Particles (SEPs) is usually carried out by means of the 1D focused transport equation and the same approach is adopted within several SEP Space Weather forecasting frameworks. We present an alternative approach, based on test particle simulations, which naturally describes 3D particle propagation. The SPARX forecasting system is an example of how test particle simulations can be used in real time in a Space Weather context. SPARX is currently operational within the COMESEP Alert System. The performance of the system, which is triggered by detection of a solar flare of class >M1.0 is evaluated by comparing forecasts for flare events between 1997 and 2017 with actual SEP data from the GOES spacecraft.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aran, A., Sanahuja, B. & Lario, D. 2006, Adv. Space Res., 37, 1240CrossRefGoogle Scholar
Crosby, N. B., et al. 2012, in AIP Conference Series, vol. 1500, ed. Q. Hu, et al. p. 159Google Scholar
Dalla, S., Marsh, M. S., Kelly, J. & Laitinen, T. 2013, J. Geophys. Res., 118, 5979CrossRefGoogle Scholar
Dierckxsens, M., et al. 2015, Solar Phys., 290, 841CrossRefGoogle Scholar
Luhmann, J. G., et al. 2010, Adv. Space Res., 46, 1CrossRefGoogle Scholar
Marsh, M. S., Dalla, S., Kelly, J. & Laitinen, T. 2013, Ap. J., 774, 4CrossRefGoogle Scholar
Marsh, M. S., Dalla, S., Dierckxsens, M., Laitinen, T. & Crosby, N. B. 2015, Space Wea., 13, 386CrossRefGoogle Scholar
Onsager, T. G., et al. 1996, in GOES-8 and Beyond, Proceedings of SPIE, ed. Washwell, E. R., vol. 2812, p. 281Google Scholar
Swalwell, B., Dalla, S. & Walsh, R. W. 2017, Solar Phys., 292, 173CrossRefGoogle Scholar
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Application of Test Particle Simulations to Solar Energetic Particle Forecasting
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Application of Test Particle Simulations to Solar Energetic Particle Forecasting
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Application of Test Particle Simulations to Solar Energetic Particle Forecasting
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *